⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rnsymshf.cc

📁 ARPACK is a collection of Fortran77 subroutines designed to solve large scale eigenvalue problems.
💻 CC
字号:
/*   ARPACK++ v1.0 8/1/1997   c++ interface to ARPACK code.   MODULE RNSymShf.cc.   Example program that illustrates how to solve a real   nonsymmetric standard eigenvalue problem in shift and invert   mode using the ARrcNonSymStdEig class.   1) Problem description:      In this example we try to solve A*x = x*lambda in regular mode,      where A is derived from the centered difference discretization      of the 1-dimensional convection-diffusion operator                        (d^2u / dx^2) + rho*(du/dx)      on the interval [0,1] with zero Dirichlet boundary condition.      The shift sigma is a real number.   2) Data structure used to represent matrix A:      class ARrcNonSymStdEig requires the user to provide a way to      perform the matrix-vector product w = OPv, where OP =      inv[A - sigma*I]. In this example a class called NonSymMatrixB was      created with this purpose. NonSymMatrixB contains a member function,      MultOPv, that takes a vector v and returns the product OPv in w.   3) The reverse communication interface:      This example uses the reverse communication interface, which      means that the desired eigenvalues cannot be obtained directly      from an ARPACK++ class.      Here, the overall process of finding eigenvalues by using the      Arnoldi method is splitted into two parts. In the first, a      sequence of calls to a function called TakeStep is combined      with matrix-vector products in order to find an Arnoldi basis.      In the second part, an ARPACK++ function like FindEigenvectors      (or EigenValVectors) is used to extract eigenvalues and      eigenvectors.   4) Included header files:      File             Contents      -----------      -------------------------------------------      nmatrixb.h       The NonSymMatrixB class definition.      arrsnsym.h       The ARrcNonSymStdEig class definition.      rnsymsol.h       The Solution function.   5) ARPACK Authors:      Richard Lehoucq      Kristyn Maschhoff      Danny Sorensen      Chao Yang      Dept. of Computational & Applied Mathematics      Rice University      Houston, Texas*/#include "nmatrixb.h"#include "rnsymsol.h"#include "arrsnsym.h"template<class T>void Test(T type){  // Defining a nonsymmetric matrix.  NonSymMatrixB<T> B(100, 1.0, 10.0); // n = 100, shift = 1, rho = 10.  // Creating a nonsymmetric eigenvalue problem and defining what we need:  // the four eigenvectors of B nearest to 1.0.  ARrcNonSymStdEig<T> prob(B.ncols(), 4, (T)1.0);  // Finding an Arnoldi basis.  while (!prob.ArnoldiBasisFound()) {    // Calling ARPACK FORTRAN code. Almost all work needed to    // find an Arnoldi basis is performed by TakeStep.    prob.TakeStep();    if ((prob.GetIdo() == 1)||(prob.GetIdo() == -1)) {      // Performing matrix-vector multiplication.      // In shift and invert mode, w = OPv must be performed      // whenever GetIdo is equal to 1 or -1. GetVector supplies      // a pointer to the input vector, v, and PutVector a pointer      // to the output vector, w.      B.MultOPv(prob.GetVector(), prob.PutVector());    }  }  // Finding eigenvalues and eigenvectors.  prob.FindEigenvectors();  // Printing solution.  Solution(prob);} // Test.main(){  // Solving a double precision problem with n = 100.  Test((double)0.0);  // Solving a single precision problem with n = 100.  Test((float)0.0);} // main

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -