📄 rnsymshf.cc
字号:
/* ARPACK++ v1.0 8/1/1997 c++ interface to ARPACK code. MODULE RNSymShf.cc. Example program that illustrates how to solve a real nonsymmetric standard eigenvalue problem in shift and invert mode using the ARrcNonSymStdEig class. 1) Problem description: In this example we try to solve A*x = x*lambda in regular mode, where A is derived from the centered difference discretization of the 1-dimensional convection-diffusion operator (d^2u / dx^2) + rho*(du/dx) on the interval [0,1] with zero Dirichlet boundary condition. The shift sigma is a real number. 2) Data structure used to represent matrix A: class ARrcNonSymStdEig requires the user to provide a way to perform the matrix-vector product w = OPv, where OP = inv[A - sigma*I]. In this example a class called NonSymMatrixB was created with this purpose. NonSymMatrixB contains a member function, MultOPv, that takes a vector v and returns the product OPv in w. 3) The reverse communication interface: This example uses the reverse communication interface, which means that the desired eigenvalues cannot be obtained directly from an ARPACK++ class. Here, the overall process of finding eigenvalues by using the Arnoldi method is splitted into two parts. In the first, a sequence of calls to a function called TakeStep is combined with matrix-vector products in order to find an Arnoldi basis. In the second part, an ARPACK++ function like FindEigenvectors (or EigenValVectors) is used to extract eigenvalues and eigenvectors. 4) Included header files: File Contents ----------- ------------------------------------------- nmatrixb.h The NonSymMatrixB class definition. arrsnsym.h The ARrcNonSymStdEig class definition. rnsymsol.h The Solution function. 5) ARPACK Authors: Richard Lehoucq Kristyn Maschhoff Danny Sorensen Chao Yang Dept. of Computational & Applied Mathematics Rice University Houston, Texas*/#include "nmatrixb.h"#include "rnsymsol.h"#include "arrsnsym.h"template<class T>void Test(T type){ // Defining a nonsymmetric matrix. NonSymMatrixB<T> B(100, 1.0, 10.0); // n = 100, shift = 1, rho = 10. // Creating a nonsymmetric eigenvalue problem and defining what we need: // the four eigenvectors of B nearest to 1.0. ARrcNonSymStdEig<T> prob(B.ncols(), 4, (T)1.0); // Finding an Arnoldi basis. while (!prob.ArnoldiBasisFound()) { // Calling ARPACK FORTRAN code. Almost all work needed to // find an Arnoldi basis is performed by TakeStep. prob.TakeStep(); if ((prob.GetIdo() == 1)||(prob.GetIdo() == -1)) { // Performing matrix-vector multiplication. // In shift and invert mode, w = OPv must be performed // whenever GetIdo is equal to 1 or -1. GetVector supplies // a pointer to the input vector, v, and PutVector a pointer // to the output vector, w. B.MultOPv(prob.GetVector(), prob.PutVector()); } } // Finding eigenvalues and eigenvectors. prob.FindEigenvectors(); // Printing solution. Solution(prob);} // Test.main(){ // Solving a double precision problem with n = 100. Test((double)0.0); // Solving a single precision problem with n = 100. Test((float)0.0);} // main
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -