📄 rsvd.cc
字号:
/* ARPACK++ v1.0 8/1/1997 c++ interface to ARPACK code. MODULE RSVD.cc. Example program that illustrates how to use ARPACK++ to compute the singular value decomposition of a real nonsymmetric matrix using the ARrcNonSymStdEig class. 1) Problem description: In this example we try to solve (A'*A)*x = x*lambda in regular mode (where A is a m by n real matrix) in order to find a few of the largest singular values of A and the corresponding right singular vectors. In this example, m is greater than n. To find the SVD of a matrix with m < n, the user must change the roles of A and A' in the above equation. 2) Data structure used to represent matrix A: ARrcNonSymStdEig is a class that requires the user to provide a way to perform the matrix-vector product w = (A'*A)v. In this example a class called NonSymMatrixA was created with this purpose. NonSymMatrixA contains a member function, MultOPv(v,w), that takes a vector v and returns the product (A'*A)*v in w. 3) The reverse communication interface: This example uses the reverse communication interface, which means that the desired eigenvalues cannot be obtained directly from an ARPACK++ class. Here, the overall process of finding eigenvalues by using the Arnoldi method is splitted into two parts. In the first, a sequence of calls to a function called TakeStep is combined with matrix-vector products in order to find an Arnoldi basis. In the second part, an ARPACK++ function like FindEigenvectors (or EigenValVectors) is used to extract eigenvalues and eigenvectors. 4) Included header files: File Contents ----------- ------------------------------------------- nmatrixv.h The NonSymMatrixV class definition. arrsnsym.h The ARrcNonSymStdEig class definition. rnsymvsl.h The Solution function. 5) ARPACK Authors: Richard Lehoucq Kristyn Maschhoff Danny Sorensen Chao Yang Dept. of Computational & Applied Mathematics Rice University Houston, Texas*/#include "nmatrixv.h"#include "rnsymvsl.h"#include "arrsnsym.h"template<class T>void Test(T type){ // Defining a nonsymetric matrix. NonSymMatrixV<T> A(500, 100); // m = 500, n = 100. // Creating a nonsymmetric eigenvalue problem and defining what we need: // the four eigenvectors of (A'*A) with largest magnitude. ARrcNonSymStdEig<T> prob(A.ncols(), 4L); // Finding an Arnoldi basis. while (!prob.ArnoldiBasisFound()) { // Calling ARPACK FORTRAN code. Almost all work needed to // find an Arnoldi basis is performed by TakeStep. prob.TakeStep(); if ((prob.GetIdo() == 1)||(prob.GetIdo() == -1)) { // Performing matrix-vector multiplication. // In regular mode, w = (A'*A)*v must be performed whenever // GetIdo is equal to 1 or -1. GetVector supplies a pointer // to the input vector, v, and PutVector a pointer to the // output vector, w. A.MultOPv(prob.GetVector(), prob.PutVector()); } } // Finding eigenvalues and eigenvectors. prob.FindEigenvectors(); // Printing singular values. Solution(prob);} // Test.main(){ // Solving a double precision problem with n = 100. Test((float)0.0); // Solving a single precision problem with n = 100. Test((double)0.0);} // main
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -