⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rnsymgsc.cc

📁 ARPACK is a collection of Fortran77 subroutines designed to solve large scale eigenvalue problems.
💻 CC
字号:
/*   ARPACK++ v1.0 8/1/1997   c++ interface to ARPACK code.   MODULE RNSymGSC.cc.   Example program that illustrates how to solve a real   nonsymmetric generalized eigenvalue problem in complex shift   and invert mode using the ARrcNonSymGenEig class.   1) Problem description:      In this example we try to solve A*x = B*x*lambda in shift and      invert mode, where A is the tridiagonal matrix with 2 on the      diagonal, -2 on the subdiagonal and 3 on the superdiagonal, and      B is the tridiagonal matrix with 4 on the diagonal and 1 on the      off-diagonals.      The shift sigma is a complex number.   2) Data structure used to represent matrix A:      To obtain the eigenvalues of the above problem, the user is      required to provide a way to perform the matrix-vector products      w = OP*Bv = real{inv(A-sigma*B)}*B*v, w = A*v and w = B*v. In      this example, a class called NonSymGenProblemC was created with      this purpose. NonSymGenProblemC contains a member function,      MultOPv(v,w), that takes a vector v and returns the product OPv      in w. It also contains two objects, A and B, that      store matrices A and B, respectively. The product Bv is      performed by MultMv, a member function of B, and Av is obtained      by calling A.MultMv.   3) The reverse communication interface:      This example uses the reverse communication interface, which      means that the desired eigenvalues cannot be obtained directly      from an ARPACK++ class.      Here, the overall process of finding eigenvalues by using the      Arnoldi method is splitted into two parts. In the first, a      sequence of calls to a function called TakeStep is combined      with matrix-vector products in order to find an Arnoldi basis.      In the second part, an ARPACK++ function like FindEigenvectors      (or EigenValVectors) is used to extract eigenvalues and      eigenvectors.   4) Included header files:      File             Contents      -----------      -------------------------------------------      ngenprbc.h       The NonSymGenProblemC class definition.      arrgnsym.h       The ARrcNonSymGenEig class definition.      rnsymgsl.h       The Solution function.   5) ARPACK Authors:      Richard Lehoucq      Kristyn Maschhoff      Danny Sorensen      Chao Yang      Dept. of Computational & Applied Mathematics      Rice University      Houston, Texas*/#include "ngenprbc.h"#include "rnsymgsl.h"#include "arrgnsym.h"template<class FLOAT>void RecoverEigenvalues(long nconv, NonSymGenProblemC<FLOAT>& P,                        FLOAT EigVec[], FLOAT EigValR[], FLOAT EigValI[])/*   This function is used to recover the eigenvalues of the original   problem A.x = B.x.lambda, after calling ARPACK++.   When a complex shift is used to solve a nonsymmetric problem   defined by the ARRCNonSymGenEig class, the Rayleigh quotient   lambda = x'Ax/x'Bx must be formed by the user to obtain the   desired eigenvalues.   The Rayleigh quotient cannot be calculated automatically by   ARPACK++ because ARRCNonSymGenEig do not handle matrix information.   Other classes such as ARNonSymGenEig and ARLUNonSymGenEig do   not require the user to define this eigenvalue transformation.*/{  int    j, n, ColJ, ColJp1;  FLOAT  numr, numi, denr, deni;  FLOAT* Ax;  n  = P.A.ncols();  Ax = new FLOAT[n];  for (j=0; j<nconv; j++) {    ColJ   = j*n;    ColJp1 = ColJ+n;    if (EigValI[j] == (FLOAT)0.0) {      // Eigenvalue is real. Computing EigVal = x'(Ax)/x'(Mx).      P.A.MultMv(&EigVec[ColJ], Ax);      numr = dot(n, &EigVec[ColJ], 1, Ax, 1);      P.B.MultMv(&EigVec[ColJ], Ax);      denr = dot(n, &EigVec[ColJ], 1, Ax, 1);      EigValR[j] =  numr / denr;    }    else {      // Eigenvalue is complex.      // Computing x'(Ax).      P.A.MultMv(&EigVec[ColJ], Ax);      numr = dot(n, &EigVec[ColJ], 1, Ax, 1);      numi = dot(n, &EigVec[ColJp1], 1, Ax, 1);      P.A.MultMv(&EigVec[ColJp1], Ax);      numr = numr + dot(n, &EigVec[ColJp1], 1, Ax, 1);      numi = -numi + dot(n, &EigVec[ColJ], 1, Ax, 1);      // Computing x'(Mx).      P.B.MultMv(&EigVec[ColJ], Ax);      denr = dot(n, &EigVec[ColJ], 1, Ax, 1);      deni = dot(n, &EigVec[ColJp1], 1, Ax, 1);      P.B.MultMv(&EigVec[ColJp1], Ax);      denr = denr + dot(n, &EigVec[ColJp1], 1, Ax, 1);      deni = -deni + dot(n, &EigVec[ColJ], 1, Ax, 1);      // Computing the first eigenvalue of the conjugate pair.      EigValR[j] = (numr*denr+numi*deni) / lapy2(denr, deni);      EigValI[j] = (numi*denr-numr*deni) / lapy2(denr, deni);      // Getting the second eigenvalue of the conjugate pair by taking      // the conjugate of the first.      EigValR[j+1] = EigValR[j];      EigValI[j+1] = -EigValI[j];      j++;    }  }  delete[] Ax;} // RecoverEigenvalues.template<class T>void Test(T type){  long nconv;  // Defining a temporary vector.  T temp[101];  // Creating a pencil.  NonSymGenProblemC<T> P(100, 0.4, 0.6); // n = 100, sigma = (0.4, 0.6).  // Creating a nonsymmetric eigenvalue problem. 'R' indicates that  // we will use the real part of OPv. P.A.ncols() furnishes  // the dimension of the problem. 4 is the number of eigenvalues  // sought and 0.4 + 0.6I is the shift.  ARrcNonSymGenEig<T> prob(P.A.ncols(), 4L, 'R', 0.4, 0.6);  // Finding an Arnoldi basis.  while (!prob.ArnoldiBasisFound()) {    // Calling ARPACK FORTRAN code. Almost all work needed to    // find an Arnoldi basis is performed by TakeStep.    prob.TakeStep();    switch (prob.GetIdo()) {    case -1:      // Performing w <- Re{OP*B*v} for the first time.      // This product must be performed only if GetIdo is equal to      // -1. GetVector supplies a pointer to the input vector, v,      // and PutVector a pointer to the output vector, w.      P.B.MultMv(prob.GetVector(), temp);      P.MultOPvRe(temp, prob.PutVector());      break;    case  1:      // Performing w <- Real{OP*B*v} when Bv is available.      // This product must be performed whenever GetIdo is equal to      // 1. GetProd supplies a pointer to the previously calculated      // product Bv and PutVector a pointer to the output vector w.      P.MultOPvRe(prob.GetProd(), prob.PutVector());      break;    case  2:      // Performing w <- B*v.      P.B.MultMv(prob.GetVector(), prob.PutVector());    }  }  // Finding eigenvalues and eigenvectors.  nconv = prob.FindEigenvectors();  // Recovering eigenvalues of the original problem  // using the Rayleigh quotient.  RecoverEigenvalues(nconv, P, prob.RawEigenvectors(),                     prob.RawEigenvalues(), prob.RawEigenvaluesImag());  // Printing solution.  Solution(prob);} // Test.main(){  // Solving a single precision problem with n = 100.#ifndef __SUNPRO_CC  Test((float)0.0);#endif  // Solving a double precision problem with n = 100.  Test((double)0.0);} // main

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -