📄 rnsymgsc.cc
字号:
/* ARPACK++ v1.0 8/1/1997 c++ interface to ARPACK code. MODULE RNSymGSC.cc. Example program that illustrates how to solve a real nonsymmetric generalized eigenvalue problem in complex shift and invert mode using the ARrcNonSymGenEig class. 1) Problem description: In this example we try to solve A*x = B*x*lambda in shift and invert mode, where A is the tridiagonal matrix with 2 on the diagonal, -2 on the subdiagonal and 3 on the superdiagonal, and B is the tridiagonal matrix with 4 on the diagonal and 1 on the off-diagonals. The shift sigma is a complex number. 2) Data structure used to represent matrix A: To obtain the eigenvalues of the above problem, the user is required to provide a way to perform the matrix-vector products w = OP*Bv = real{inv(A-sigma*B)}*B*v, w = A*v and w = B*v. In this example, a class called NonSymGenProblemC was created with this purpose. NonSymGenProblemC contains a member function, MultOPv(v,w), that takes a vector v and returns the product OPv in w. It also contains two objects, A and B, that store matrices A and B, respectively. The product Bv is performed by MultMv, a member function of B, and Av is obtained by calling A.MultMv. 3) The reverse communication interface: This example uses the reverse communication interface, which means that the desired eigenvalues cannot be obtained directly from an ARPACK++ class. Here, the overall process of finding eigenvalues by using the Arnoldi method is splitted into two parts. In the first, a sequence of calls to a function called TakeStep is combined with matrix-vector products in order to find an Arnoldi basis. In the second part, an ARPACK++ function like FindEigenvectors (or EigenValVectors) is used to extract eigenvalues and eigenvectors. 4) Included header files: File Contents ----------- ------------------------------------------- ngenprbc.h The NonSymGenProblemC class definition. arrgnsym.h The ARrcNonSymGenEig class definition. rnsymgsl.h The Solution function. 5) ARPACK Authors: Richard Lehoucq Kristyn Maschhoff Danny Sorensen Chao Yang Dept. of Computational & Applied Mathematics Rice University Houston, Texas*/#include "ngenprbc.h"#include "rnsymgsl.h"#include "arrgnsym.h"template<class FLOAT>void RecoverEigenvalues(long nconv, NonSymGenProblemC<FLOAT>& P, FLOAT EigVec[], FLOAT EigValR[], FLOAT EigValI[])/* This function is used to recover the eigenvalues of the original problem A.x = B.x.lambda, after calling ARPACK++. When a complex shift is used to solve a nonsymmetric problem defined by the ARRCNonSymGenEig class, the Rayleigh quotient lambda = x'Ax/x'Bx must be formed by the user to obtain the desired eigenvalues. The Rayleigh quotient cannot be calculated automatically by ARPACK++ because ARRCNonSymGenEig do not handle matrix information. Other classes such as ARNonSymGenEig and ARLUNonSymGenEig do not require the user to define this eigenvalue transformation.*/{ int j, n, ColJ, ColJp1; FLOAT numr, numi, denr, deni; FLOAT* Ax; n = P.A.ncols(); Ax = new FLOAT[n]; for (j=0; j<nconv; j++) { ColJ = j*n; ColJp1 = ColJ+n; if (EigValI[j] == (FLOAT)0.0) { // Eigenvalue is real. Computing EigVal = x'(Ax)/x'(Mx). P.A.MultMv(&EigVec[ColJ], Ax); numr = dot(n, &EigVec[ColJ], 1, Ax, 1); P.B.MultMv(&EigVec[ColJ], Ax); denr = dot(n, &EigVec[ColJ], 1, Ax, 1); EigValR[j] = numr / denr; } else { // Eigenvalue is complex. // Computing x'(Ax). P.A.MultMv(&EigVec[ColJ], Ax); numr = dot(n, &EigVec[ColJ], 1, Ax, 1); numi = dot(n, &EigVec[ColJp1], 1, Ax, 1); P.A.MultMv(&EigVec[ColJp1], Ax); numr = numr + dot(n, &EigVec[ColJp1], 1, Ax, 1); numi = -numi + dot(n, &EigVec[ColJ], 1, Ax, 1); // Computing x'(Mx). P.B.MultMv(&EigVec[ColJ], Ax); denr = dot(n, &EigVec[ColJ], 1, Ax, 1); deni = dot(n, &EigVec[ColJp1], 1, Ax, 1); P.B.MultMv(&EigVec[ColJp1], Ax); denr = denr + dot(n, &EigVec[ColJp1], 1, Ax, 1); deni = -deni + dot(n, &EigVec[ColJ], 1, Ax, 1); // Computing the first eigenvalue of the conjugate pair. EigValR[j] = (numr*denr+numi*deni) / lapy2(denr, deni); EigValI[j] = (numi*denr-numr*deni) / lapy2(denr, deni); // Getting the second eigenvalue of the conjugate pair by taking // the conjugate of the first. EigValR[j+1] = EigValR[j]; EigValI[j+1] = -EigValI[j]; j++; } } delete[] Ax;} // RecoverEigenvalues.template<class T>void Test(T type){ long nconv; // Defining a temporary vector. T temp[101]; // Creating a pencil. NonSymGenProblemC<T> P(100, 0.4, 0.6); // n = 100, sigma = (0.4, 0.6). // Creating a nonsymmetric eigenvalue problem. 'R' indicates that // we will use the real part of OPv. P.A.ncols() furnishes // the dimension of the problem. 4 is the number of eigenvalues // sought and 0.4 + 0.6I is the shift. ARrcNonSymGenEig<T> prob(P.A.ncols(), 4L, 'R', 0.4, 0.6); // Finding an Arnoldi basis. while (!prob.ArnoldiBasisFound()) { // Calling ARPACK FORTRAN code. Almost all work needed to // find an Arnoldi basis is performed by TakeStep. prob.TakeStep(); switch (prob.GetIdo()) { case -1: // Performing w <- Re{OP*B*v} for the first time. // This product must be performed only if GetIdo is equal to // -1. GetVector supplies a pointer to the input vector, v, // and PutVector a pointer to the output vector, w. P.B.MultMv(prob.GetVector(), temp); P.MultOPvRe(temp, prob.PutVector()); break; case 1: // Performing w <- Real{OP*B*v} when Bv is available. // This product must be performed whenever GetIdo is equal to // 1. GetProd supplies a pointer to the previously calculated // product Bv and PutVector a pointer to the output vector w. P.MultOPvRe(prob.GetProd(), prob.PutVector()); break; case 2: // Performing w <- B*v. P.B.MultMv(prob.GetVector(), prob.PutVector()); } } // Finding eigenvalues and eigenvectors. nconv = prob.FindEigenvectors(); // Recovering eigenvalues of the original problem // using the Rayleigh quotient. RecoverEigenvalues(nconv, P, prob.RawEigenvectors(), prob.RawEigenvalues(), prob.RawEigenvaluesImag()); // Printing solution. Solution(prob);} // Test.main(){ // Solving a single precision problem with n = 100.#ifndef __SUNPRO_CC Test((float)0.0);#endif // Solving a double precision problem with n = 100. Test((double)0.0);} // main
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -