⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rnsymgsh.cc

📁 ARPACK is a collection of Fortran77 subroutines designed to solve large scale eigenvalue problems.
💻 CC
字号:
/*   ARPACK++ v1.0 8/1/1997   c++ interface to ARPACK code.   MODULE RNSymGSh.cc.   Example program that illustrates how to solve a real   nonsymmetric generalized eigenvalue problem in real shift   and invert mode using the ARrcNonSymGenEig class.   1) Problem description:      In this example we try to solve A*x = B*x*lambda in shift and      invert mode, where A and B are derived from the finite element      discretization of the 1-dimensional convection-diffusion operator                         (d^2u / dx^2) + rho*(du/dx)      on the interval [0,1] with zero Dirichlet boundary conditions      using linear elements.      The shift sigma is a real number.   2) Data structure used to represent matrix A:      ARrcNonSymGenEig is a class that requires the user to provide a      way to perform the matrix-vector products w = OP*Bv =      inv(A-sigma*B)*B*v and w = B*v, where sigma is the adopted shift.      In this example a class called NonSymGenProblemB was created with      this purpose. NonSymGenProblemB contains a member function,      MultOPv(v,w), that takes a vector v and returns the product OPv      in w. It also contains an object, B, that stores matrix B data.      The product Bv is performed by MultMv, a member function of B.   3) The reverse communication interface:      This example uses the reverse communication interface, which      means that the desired eigenvalues cannot be obtained directly      from an ARPACK++ class.      Here, the overall process of finding eigenvalues by using the      Arnoldi method is splitted into two parts. In the first, a      sequence of calls to a function called TakeStep is combined      with matrix-vector products in order to find an Arnoldi basis.      In the second part, an ARPACK++ function like FindEigenvectors      (or EigenValVectors) is used to extract eigenvalues and      eigenvectors.   4) Included header files:      File             Contents      -----------      -------------------------------------------      ngenprbb.h       The NonSymGenProblemB class definition.      arrgnsym.h       The ARrcNonSymGenEig class definition.      rnsymgsl.h       The Solution function.   5) ARPACK Authors:      Richard Lehoucq      Kristyn Maschhoff      Danny Sorensen      Chao Yang      Dept. of Computational & Applied Mathematics      Rice University      Houston, Texas*/#include "ngenprbb.h"#include "rnsymgsl.h"#include "arrgnsym.h"template<class T>void Test(T type){  // Defining a temporary vector.  T temp[101];  // Creating a pencil.  NonSymGenProblemB<T> P(100, 10, 1.0); // n = 100, rho = 10, sigma = 1.  // Creating a nonsymmetric eigenvalue problem and defining what we need:  // the four eigenvectors with largest magnitude.  ARrcNonSymGenEig<T> prob(P.A.ncols(), 4L, 1.0);  // Finding an Arnoldi basis.  while (!prob.ArnoldiBasisFound()) {    // Calling ARPACK FORTRAN code. Almost all work needed to    // find an Arnoldi basis is performed by TakeStep.    prob.TakeStep();    switch (prob.GetIdo()) {    case -1:      // Performing w <- OP*B*v for the first time.      // This product must be performed only if GetIdo is equal to      // -1. GetVector supplies a pointer to the input vector, v,      // and PutVector a pointer to the output vector, w.      P.B.MultMv(prob.GetVector(), temp);      P.MultOPv(temp, prob.PutVector());      break;    case  1:      // Performing w <- OP*B*v when Bv is available.      // This product must be performed whenever GetIdo is equal to      // 1. GetProd supplies a pointer to the previously calculated      // product Bv and PutVector a pointer to the output vector w.      P.MultOPv(prob.GetProd(), prob.PutVector());      break;    case  2:      // Performing w <- B*v.      P.B.MultMv(prob.GetVector(), prob.PutVector());    }  }  // Finding eigenvalues and eigenvectors.  prob.FindEigenvectors();  // Printing solution.  Solution(prob);} // Test.main(){  // Solving a double precision problem with n = 100.  Test((double)0.0);  // Solving a single precision problem with n = 100.  Test((float)0.0);} // main

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -