⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bcompgsh.cc

📁 ARPACK is a collection of Fortran77 subroutines designed to solve large scale eigenvalue problems.
💻 CC
字号:
/*   ARPACK++ v1.0 8/1/1997   c++ interface to ARPACK code.   MODULE BCompGSh.cc.   Example program that illustrates how to solve a complex   generalized eigenvalue problem in shift and invert mode using   the ARluCompGenEig class.   1) Problem description:      In this example we try to solve A*x = B*x*lambda in shift and      invert mode, where A and B are derived from a finite element      discretization of a 1-dimensional convection-diffusion operator                         (d^2u/dx^2) + rho*(du/dx)      on the interval [0,1], with zero boundary conditions, using      piecewise linear elements.   2) Data structure used to represent matrices A and B:      {ndiagL, ndiagU, A}: matrix A data in band format. The columns      of A are stored sequentially in vector A. ndiagL and ndiagU      supply the lower and upper bandwidth of A, respectively.       {ndiagL, ndiagU, B}: matrix B in band format.   3) Library called by this example:      The LAPACK package is called by ARluCompGenEig to solve      some linear systems involving (A-sigma*B).   4) Included header files:      File             Contents      -----------      ---------------------------------------------      bcmatrxb.h       CompMatrixE, a function that generates matrix                       A in band format.      bcmatrxc.h       CompMatrixF, a function that generates matrix                       B in band format.      arbnsmat.h       The ARbdNonSymMatrix class definition.      arbgcomp.h       The ARluCompGenEig class definition.      lcompsol.h       The Solution function.      arcomp.h         The "arcomplex" (complex) type definition.   5) ARPACK Authors:      Richard Lehoucq      Kristyn Maschhoff      Danny Sorensen      Chao Yang      Dept. of Computational & Applied Mathematics      Rice University      Houston, Texas*/#include "arcomp.h"#include "bcmatrxb.h"#include "bcmatrxc.h"#include "arbnsmat.h"#include "arbgcomp.h"#include "lcompsol.h"main(){  // Defining variables;  int               n;            // Dimension of the problem.  int               ndiagL;       // Lower bandwidth of A and B.  int               ndiagU;       // Upper bandwidth of A and B.  arcomplex<double> rho;          // Parameter used to define A.  arcomplex<double> *valA, *valB; // pointers to arrays that store                                  // the elements of A and B.  // Creating complex matrices A and B.  n   =  100;  rho = arcomplex<double>(10.0, 0.0);  CompMatrixB(n, rho, ndiagL, ndiagU, valA);  ARbdNonSymMatrix<arcomplex<double> > A(n, ndiagL, ndiagU, valA);  CompMatrixC(n, ndiagL, ndiagU, valB);  ARbdNonSymMatrix<arcomplex<double> > B(n, ndiagL, ndiagU, valB);  // Defining what we need: the four eigenvectors nearest to sigma.  ARluCompGenEig<double> dprob(4L, A, B, arcomplex<double>(10.0,0.0));  // Finding eigenvalues and eigenvectors.  dprob.FindEigenvectors();  // Printing solution.  Solution(A, B, dprob);} // main.

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -