📄 bnsymgsh.cc
字号:
/* ARPACK++ v1.0 8/1/1997 c++ interface to ARPACK code. MODULE BNSymGSh.cc. Example program that illustrates how to solve a real nonsymmetric generalized eigenvalue problem in real shift and invert mode using the ARluNonSymGenEig class. 1) Problem description: In this example we try to solve A*x = B*x*lambda in real shift and invert mode, where A and B are derived from the finite element discretization of the 1-dimensional convection-diffusion operator (d^2u / dx^2) + rho*(du/dx) on the interval [0,1] with zero Dirichlet boundary conditions using linear elements. 2) Data structure used to represent matrices A and B: {ndiagL, ndiagU, A}: matrix A data in band format. The columns of A are stored sequentially in vector A. ndiagL and ndiagU supply the lower and upper bandwidth of A, respectively. {ndiagL, ndiagU, B}: matrix B in band format. 3) Library called by this example: The LAPACK package is called by ARluNonSymGenEig to solve some linear systems involving (A-sigma*B). 4) Included header files: File Contents ----------- ------------------------------------------- bnmatrxb.h StiffnessMatrix, a function that generates matrix A in band format. bnmatrxc.h MassMatrix, a function tha generates matrix B in band format. arbnsmat.h The ARbdNonSymMatrix class definition. arbgnsym.h The ARluNonSymGenEig class definition. lnsymsol.h The Solution function. 5) ARPACK Authors: Richard Lehoucq Kristyn Maschhoff Danny Sorensen Chao Yang Dept. of Computational & Applied Mathematics Rice University Houston, Texas*/#include "bnmatrxb.h"#include "bnmatrxc.h"#include "arbnsmat.h"#include "arbgnsym.h"#include "lnsymsol.h"main(){ // Defining variables; int n; // Dimension of the problem. int ndiagL; // Lower bandwidth of A and B. int ndiagU; // Upper bandwidth of A and B. double rho; // Parameter used to define A. double* valA; // pointer to an array that stores the elements of A. double* valB; // pointer to an array that stores the elements of B. // Creating matrices A and B. n = 100; rho = 10.0; StiffnessMatrix(n, rho, ndiagL, ndiagU, valA); ARbdNonSymMatrix<double> A(n, ndiagL, ndiagU, valA); MassMatrix(n, ndiagL, ndiagU, valB); ARbdNonSymMatrix<double> B(n, ndiagL, ndiagU, valB); // Defining what we need: the four eigenvectors nearest to 0.0. ARluNonSymGenEig<double> dprob(4L, A, B, 0.0); // Finding eigenvalues and eigenvectors. dprob.FindEigenvectors(); // Printing solution. Solution(A, B, dprob);} // main.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -