⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bsvd.cc

📁 ARPACK is a collection of Fortran77 subroutines designed to solve large scale eigenvalue problems.
💻 CC
字号:
/*   ARPACK++ v1.0 8/1/1997   c++ interface to ARPACK code.   MODULE BSVD.cc.   Example program that illustrates how to determine the largest    singular values of a matrix using arpack++.   1) Problem description:      In this example, Arpack++ is called to solve the symmetric problem:                             (A'*A)*v = sigma*v      where A is an n by n real band matrix.      This formulation is appropriate when m >= n.      The roles of A and A' must be reversed in the case that m < n.   2) Data structure used to represent the matrix:      {ndiagL, ndiagU, A}: matrix A data in band format. The columns      of A are stored sequentially in vector A. ndiagL and ndiagU      supply the lower and upper bandwidth of A, respectively.    3) Included header files:      File             Contents      -----------      --------------------------------------------      bnmatrxw.h       MatrixW, a function that generates matrix A                       in band format.      arbnsmat.h       The ARbdNonSymMatrix class definition.      arssym.h         The ARSymStdEig class definition.   4) ARPACK Authors:      Richard Lehoucq      Kristyn Maschhoff      Danny Sorensen      Chao Yang      Dept. of Computational & Applied Mathematics      Rice University      Houston, Texas*/#include "arssym.h"#include "bnmatrxw.h"#include "arbnsmat.h"#include "iostream.h"#include <math.h>main(){  // Defining variables;  int     i;  int     n;          // Number of columns in A.  int     nl;         // Lower bandwidth of A.  int     nu;         // Upper bandwidth of A.  double* valA;       // Pointer to an array that stores the elements of A.  double  cond;       // Condition number of A.  double* svalue = new double[4];  // Creating a band matrix with n = 100.  n  = 100;  nl = 6;  nu = 3;  MatrixW(n, nl, nu, valA);  // Using ARluNonSymMatrix to store matrix information and to  // perform the product A'Ax (LU decomposition is not used).  ARbdNonSymMatrix<double> A(n, nl, nu, valA);  // Defining what we need: eigenvalues with largest magnitude.  ARSymStdEig<double, ARbdNonSymMatrix<double> >    dprob(n, 4L, &A, &ARbdNonSymMatrix<double>::MultMtMv);  // Finding eigenvalues.  dprob.Eigenvalues(svalue);  // Calculating singular values.  for (i=0; i<4; i++) {    svalue[i] = sqrt(svalue[i]);  }  // Printing some information about the problem.  cout << endl << "Testing ARPACK++ class ARSymStdEig" << endl;  cout << "Obtaining singular values by solving (A'*A)*v = sigma*v" << endl;  cout << endl << "greatest singular values: " << endl;   for (i=0; i<4; i++) {    cout << "  sigma [" << i+1 << "]: " << svalue[i] << endl;  }} // main.

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -