📄 lcompsol.h
字号:
/* ARPACK++ v1.0 8/1/1997 c++ interface to ARPACK code. MODULE LCompSol.h Template functions that exemplify how to print information about complex standard and generalized eigenvalue problems. ARPACK Authors Richard Lehoucq Danny Sorensen Chao Yang Dept. of Computational & Applied Mathematics Rice University Houston, Texas*/#ifndef LCOMPSOL_H#define LCOMPSOL_H#include <math.h>#include "arcomp.h"#include "blas1c.h"#include "lapackc.h"#ifdef ARLNSMAT_H#include "arlscomp.h"#include "arlgcomp.h"#elif defined ARUNSMAT_H#include "aruscomp.h"#include "arugcomp.h"#elif defined ARDNSMAT_H#include "ardscomp.h"#include "ardgcomp.h"#else#include "arbscomp.h"#include "arbgcomp.h"#endiftemplate<class MATRIX, class FLOAT>void Solution(MATRIX &A, ARluCompStdEig<FLOAT> &Prob)/* Prints eigenvalues and eigenvectors of complex eigen-problems on standard "cout" stream.*/{ int i, n, nconv, mode; arcomplex<FLOAT> *Ax; FLOAT *ResNorm; n = Prob.GetN(); nconv = Prob.ConvergedEigenvalues(); mode = Prob.GetMode(); cout << endl << endl << "Testing ARPACK++ class ARluCompStdEig \n"; cout << "Complex eigenvalue problem: A*x - lambda*x" << endl; switch (mode) { case 1: cout << "Regular mode" << endl << endl; break; case 3: cout << "Shift and invert mode" << endl << endl; } cout << "Dimension of the system : " << n << endl; cout << "Number of 'requested' eigenvalues : " << Prob.GetNev() << endl; cout << "Number of 'converged' eigenvalues : " << nconv << endl; cout << "Number of Arnoldi vectors generated: " << Prob.GetNcv() << endl; cout << "Number of iterations taken : " << Prob.GetIter() << endl; cout << endl; if (Prob.EigenvaluesFound()) { // Printing eigenvalues. cout << "Eigenvalues:" << endl; for (i=0; i<nconv; i++) { cout << " lambda[" << (i+1) << "]: " << Prob.Eigenvalue(i) << endl; } cout << endl; } if (Prob.EigenvectorsFound()) { // Printing the residual norm || A*x - lambda*x || // for the nconv accurately computed eigenvectors. Ax = new arcomplex<FLOAT>[n]; ResNorm = new FLOAT[nconv+1]; for (i=0; i<nconv; i++) { A.MultMv(Prob.RawEigenvector(i),Ax); axpy(n, -Prob.Eigenvalue(i), Prob.RawEigenvector(i), 1, Ax, 1); ResNorm[i] = nrm2(n, Ax, 1)/ lapy2(real(Prob.Eigenvalue(i)),imag(Prob.Eigenvalue(i))); } for (i=0; i<nconv; i++) { cout << "||A*x(" << (i+1) << ") - lambda(" << (i+1); cout << ")*x(" << (i+1) << ")||: " << ResNorm[i] << endl; } cout << "\n"; delete[] Ax; delete[] ResNorm; }} // Solutiontemplate<class MATRA, class MATRB, class FLOAT>void Solution(MATRA &A, MATRB &B, ARluCompGenEig<FLOAT> &Prob)/* Prints eigenvalues and eigenvectors of complex generalized eigen-problems on standard "cout" stream.*/{ int i, n, nconv, mode; FLOAT *ResNorm; arcomplex<FLOAT> *Ax, *Bx; n = Prob.GetN(); nconv = Prob.ConvergedEigenvalues(); mode = Prob.GetMode(); cout << endl << endl; cout << "Testing ARPACK++ class ARluCompGenEig \n" << endl; cout << "Complex generalized eigenvalue problem: A*x - lambda*B*x" << endl; switch (mode) { case 2: cout << "Regular mode" << endl << endl; break; case 3: cout << "Shift and invert mode" << endl << endl; } cout << "Dimension of the system : " << n << endl; cout << "Number of 'requested' eigenvalues : " << Prob.GetNev() << endl; cout << "Number of 'converged' eigenvalues : " << nconv << endl; cout << "Number of Arnoldi vectors generated: " << Prob.GetNcv() << endl; cout << "Number of iterations taken : " << Prob.GetIter() << endl; cout << endl; if (Prob.EigenvaluesFound()) { // Printing eigenvalues. cout << "Eigenvalues:" << endl; for (i=0; i<nconv; i++) { cout << " lambda[" << (i+1) << "]: " << Prob.Eigenvalue(i) << endl; } cout << endl; } if (Prob.EigenvectorsFound()) { // Printing the residual norm || A*x - lambda*B*x || // for the nconv accurately computed eigenvectors. Ax = new arcomplex<FLOAT>[n]; Bx = new arcomplex<FLOAT>[n]; ResNorm = new FLOAT[nconv+1]; for (i=0; i<nconv; i++) { A.MultMv(Prob.RawEigenvector(i),Ax); B.MultMv(Prob.RawEigenvector(i),Bx); axpy(n, -Prob.Eigenvalue(i), Bx, 1, Ax, 1); ResNorm[i] = nrm2(n, Ax, 1)/ lapy2(real(Prob.Eigenvalue(i)),imag(Prob.Eigenvalue(i))); } for (i=0; i<nconv; i++) { cout << "||A*x(" << (i+1) << ") - lambda(" << (i+1); cout << ")*B*x(" << (i+1) << ")||: " << ResNorm[i] << "\n"; } cout << endl; delete[] Ax; delete[] Bx; delete[] ResNorm; }} // Solution#endif // LCOMPSOL_H
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -