📄 lsymsol.h
字号:
/* ARPACK++ v1.0 8/1/1997 c++ interface to ARPACK code. MODULE LSymSol.h Template functions that exemplify how to print information about symmetric standard and generalized eigenvalue problems. ARPACK Authors Richard Lehoucq Danny Sorensen Chao Yang Dept. of Computational & Applied Mathematics Rice University Houston, Texas*/#ifndef LSYMSOL_H#define LSYMSOL_H#include <math.h>#include "blas1c.h"#include "lapackc.h"#ifdef ARLSMAT_H#include "arlssym.h"#include "arlgsym.h"#elif defined ARUSMAT_H#include "arussym.h"#include "arugsym.h"#elif defined ARDSMAT_H#include "ardssym.h"#include "ardgsym.h"#else#include "arbssym.h"#include "arbgsym.h"#endiftemplate<class MATRIX, class FLOAT>void Solution(MATRIX &A, ARluSymStdEig<FLOAT> &Prob)/* Prints eigenvalues and eigenvectors of symmetric eigen-problems on standard "cout" stream.*/{ int i, n, nconv, mode; FLOAT *Ax; FLOAT *ResNorm; n = Prob.GetN(); nconv = Prob.ConvergedEigenvalues(); mode = Prob.GetMode(); cout << endl << endl << "Testing ARPACK++ class ARluSymStdEig \n"; cout << "Real symmetric eigenvalue problem: A*x - lambda*x" << endl; switch (mode) { case 1: cout << "Regular mode" << endl; break; case 3: cout << "Shift and invert mode" << endl; } cout << endl; cout << "Dimension of the system : " << n << endl; cout << "Number of 'requested' eigenvalues : " << Prob.GetNev() << endl; cout << "Number of 'converged' eigenvalues : " << nconv << endl; cout << "Number of Arnoldi vectors generated: " << Prob.GetNcv() << endl; cout << "Number of iterations taken : " << Prob.GetIter() << endl; cout << endl; if (Prob.EigenvaluesFound()) { // Printing eigenvalues. cout << "Eigenvalues:" << endl; for (i=0; i<nconv; i++) { cout << " lambda[" << (i+1) << "]: " << Prob.Eigenvalue(i) << endl; } cout << endl; } if (Prob.EigenvectorsFound()) { // Printing the residual norm || A*x - lambda*x || // for the nconv accurately computed eigenvectors. Ax = new FLOAT[n]; ResNorm = new FLOAT[nconv+1]; for (i=0; i<nconv; i++) { A.MultMv(Prob.RawEigenvector(i), Ax); axpy(n, -Prob.Eigenvalue(i), Prob.RawEigenvector(i), 1, Ax, 1); ResNorm[i] = nrm2(n, Ax, 1)/fabs(Prob.Eigenvalue(i)); } for (i=0; i<nconv; i++) { cout << "||A*x(" << (i+1) << ") - lambda(" << (i+1); cout << ")*x(" << (i+1) << ")||: " << ResNorm[i] << "\n"; } cout << "\n"; delete[] Ax; delete[] ResNorm; }} // Solutiontemplate<class MATRA, class MATRB, class FLOAT>void Solution(MATRA &A, MATRB &B, ARluSymGenEig<FLOAT> &Prob)/* Prints eigenvalues and eigenvectors of symmetric generalized eigen-problems on standard "cout" stream.*/{ int i, n, nconv, mode; FLOAT *Ax, *Bx, *ResNorm; n = Prob.GetN(); nconv = Prob.ConvergedEigenvalues(); mode = Prob.GetMode(); cout << endl << endl << "Testing ARPACK++ class ARluSymGenEig \n"; cout << "Real symmetric generalized eigenvalue problem: A*x - lambda*B*x"; cout << endl; switch (mode) { case 2: cout << "Regular mode" << endl; break; case 3: cout << "Shift and invert mode" << endl; break; case 4: cout << "Buckling mode" << endl; break; case 5: cout << "Cayley mode" << endl; } cout << endl; cout << "Dimension of the system : " << n << endl; cout << "Number of 'requested' eigenvalues : " << Prob.GetNev() << endl; cout << "Number of 'converged' eigenvalues : " << nconv << endl; cout << "Number of Arnoldi vectors generated: " << Prob.GetNcv() << endl; cout << "Number of iterations taken : " << Prob.GetIter() << endl; cout << endl; if (Prob.EigenvaluesFound()) { // Printing eigenvalues. cout << "Eigenvalues:" << endl; for (i=0; i<nconv; i++) { cout << " lambda[" << (i+1) << "]: " << Prob.Eigenvalue(i) << endl; } cout << endl; } if (Prob.EigenvectorsFound()) { // Printing the residual norm || A*x - lambda*B*x || // for the nconv accurately computed eigenvectors. Ax = new FLOAT[n]; Bx = new FLOAT[n]; ResNorm = new FLOAT[nconv+1]; for (i=0; i<nconv; i++) { A.MultMv(Prob.RawEigenvector(i), Ax); B.MultMv(Prob.RawEigenvector(i), Bx); axpy(n, -Prob.Eigenvalue(i), Bx, 1, Ax, 1); ResNorm[i] = nrm2(n, Ax, 1)/fabs(Prob.Eigenvalue(i)); } for (i=0; i<nconv; i++) { cout << "||A*x(" << i << ") - lambda(" << i; cout << ")*B*x(" << i << ")||: " << ResNorm[i] << "\n"; } cout << "\n"; delete[] Ax; delete[] Bx; delete[] ResNorm; }} // Solution#endif // LSYMSOL_H
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -