⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 lsymsol.h

📁 ARPACK is a collection of Fortran77 subroutines designed to solve large scale eigenvalue problems.
💻 H
字号:
/*   ARPACK++ v1.0 8/1/1997   c++ interface to ARPACK code.   MODULE LSymSol.h   Template functions that exemplify how to print information   about symmetric standard and generalized eigenvalue problems.   ARPACK Authors      Richard Lehoucq      Danny Sorensen      Chao Yang      Dept. of Computational & Applied Mathematics      Rice University      Houston, Texas*/#ifndef LSYMSOL_H#define LSYMSOL_H#include <math.h>#include "blas1c.h"#include "lapackc.h"#ifdef ARLSMAT_H#include "arlssym.h"#include "arlgsym.h"#elif defined ARUSMAT_H#include "arussym.h"#include "arugsym.h"#elif defined ARDSMAT_H#include "ardssym.h"#include "ardgsym.h"#else#include "arbssym.h"#include "arbgsym.h"#endiftemplate<class MATRIX, class FLOAT>void Solution(MATRIX &A, ARluSymStdEig<FLOAT> &Prob)/*  Prints eigenvalues and eigenvectors of symmetric eigen-problems  on standard "cout" stream.*/{  int   i, n, nconv, mode;  FLOAT *Ax;  FLOAT *ResNorm;  n     = Prob.GetN();  nconv = Prob.ConvergedEigenvalues();  mode  = Prob.GetMode();  cout << endl << endl << "Testing ARPACK++ class ARluSymStdEig \n";  cout << "Real symmetric eigenvalue problem: A*x - lambda*x" << endl;  switch (mode) {  case 1:    cout << "Regular mode" << endl;    break;  case 3:    cout << "Shift and invert mode" << endl;  }  cout << endl;  cout << "Dimension of the system            : " << n              << endl;  cout << "Number of 'requested' eigenvalues  : " << Prob.GetNev()  << endl;  cout << "Number of 'converged' eigenvalues  : " << nconv          << endl;  cout << "Number of Arnoldi vectors generated: " << Prob.GetNcv()  << endl;  cout << "Number of iterations taken         : " << Prob.GetIter() << endl;  cout << endl;  if (Prob.EigenvaluesFound()) {    // Printing eigenvalues.    cout << "Eigenvalues:" << endl;    for (i=0; i<nconv; i++) {      cout << "  lambda[" << (i+1) << "]: " << Prob.Eigenvalue(i) << endl;    }    cout << endl;  }  if (Prob.EigenvectorsFound()) {    // Printing the residual norm || A*x - lambda*x ||    // for the nconv accurately computed eigenvectors.    Ax      = new FLOAT[n];    ResNorm = new FLOAT[nconv+1];    for (i=0; i<nconv; i++) {      A.MultMv(Prob.RawEigenvector(i), Ax);      axpy(n, -Prob.Eigenvalue(i), Prob.RawEigenvector(i), 1, Ax, 1);      ResNorm[i] = nrm2(n, Ax, 1)/fabs(Prob.Eigenvalue(i));    }    for (i=0; i<nconv; i++) {      cout << "||A*x(" << (i+1) << ") - lambda(" << (i+1);      cout << ")*x(" << (i+1) << ")||: " << ResNorm[i] << "\n";    }    cout << "\n";    delete[] Ax;    delete[] ResNorm;  }} // Solutiontemplate<class MATRA, class MATRB, class FLOAT>void Solution(MATRA &A, MATRB &B, ARluSymGenEig<FLOAT> &Prob)/*  Prints eigenvalues and eigenvectors of symmetric generalized  eigen-problems on standard "cout" stream.*/{  int   i, n, nconv, mode;  FLOAT *Ax, *Bx, *ResNorm;  n     = Prob.GetN();  nconv = Prob.ConvergedEigenvalues();  mode  = Prob.GetMode();  cout << endl << endl << "Testing ARPACK++ class ARluSymGenEig \n";  cout << "Real symmetric generalized eigenvalue problem: A*x - lambda*B*x";  cout << endl;  switch (mode) {  case 2:    cout << "Regular mode" << endl;    break;  case 3:    cout << "Shift and invert mode" << endl;    break;  case 4:    cout << "Buckling mode" << endl;    break;  case 5:    cout << "Cayley mode" << endl;  }  cout << endl;  cout << "Dimension of the system            : " << n              << endl;  cout << "Number of 'requested' eigenvalues  : " << Prob.GetNev()  << endl;  cout << "Number of 'converged' eigenvalues  : " << nconv          << endl;  cout << "Number of Arnoldi vectors generated: " << Prob.GetNcv()  << endl;  cout << "Number of iterations taken         : " << Prob.GetIter() << endl;  cout << endl;  if (Prob.EigenvaluesFound()) {    // Printing eigenvalues.    cout << "Eigenvalues:" << endl;    for (i=0; i<nconv; i++) {      cout << "  lambda[" << (i+1) << "]: " << Prob.Eigenvalue(i) << endl;    }    cout << endl;  }  if (Prob.EigenvectorsFound()) {    // Printing the residual norm || A*x - lambda*B*x ||    // for the nconv accurately computed eigenvectors.    Ax      = new FLOAT[n];    Bx      = new FLOAT[n];    ResNorm = new FLOAT[nconv+1];    for (i=0; i<nconv; i++) {      A.MultMv(Prob.RawEigenvector(i), Ax);      B.MultMv(Prob.RawEigenvector(i), Bx);      axpy(n, -Prob.Eigenvalue(i), Bx, 1, Ax, 1);      ResNorm[i] = nrm2(n, Ax, 1)/fabs(Prob.Eigenvalue(i));    }    for (i=0; i<nconv; i++) {      cout << "||A*x(" << i << ") - lambda(" << i;      cout << ")*B*x(" << i << ")||: " << ResNorm[i] << "\n";    }    cout << "\n";    delete[] Ax;    delete[] Bx;    delete[] ResNorm;  }} // Solution#endif // LSYMSOL_H

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -