📄 bnmatrxa.h
字号:
/* ARPACK++ v1.0 8/1/1997 c++ interface to ARPACK code. MODULE BNMatrxA.h Function template for the matrix | T -I | |-I T -I | A = | -I T | | ... -I| | -I T| derived from the standard central difference discretization of the 2-dimensional convection-diffusion operator (Laplacian u) + rho*(du/dx) on a unit square with zero Dirichlet boundary conditions. When rho*h/2 <= 1, the discrete convection-diffusion operator has real eigenvalues. When rho*h/2 > 1, it has COMPLEX eigenvalues. ARPACK Authors Richard Lehoucq Danny Sorensen Chao Yang Dept. of Computational & Applied Mathematics Rice University Houston, Texas*/#ifndef BNMATRXA_H#define BNMATRXA_H#include <math.h>template<class FLOAT, class INT>void BandMatrixA(INT nx, FLOAT rho, INT& n, INT& nL, INT& nU, FLOAT* &A){ // Defining internal variables. INT i, j, lda; FLOAT h, h2, df; FLOAT dd, dl, du; // Defining constants. h = 1.0/FLOAT(nx+1); h2 = h*h; dd = 4.0/h2; df = -1.0/h2; dl = df - 5.0e-1*rho/h; du = df + 5.0e-1*rho/h; // Defining the number of columns and the upper and lower bandwidth. n = nx*nx; nL = nx; nU = nx; // Creating output vector A. lda = nL+nU+1; A = new FLOAT[n*lda]; // Filling A with zeros. for (j=0; j<(n*lda); j++ ) A[j] = (FLOAT)0.0; // Creating matrix A. for (i=0, j=nU; i<n; i++, j+=lda) { if (i>=nx) A[j-nx] = df; if (i%nx) A[j-1] = du; A[j] = dd; if ((i+1)%nx) A[j+1] = dl; if (i<(n-nx)) A[j+nx] = df; } } // BandMatrixA.#endif // BNMATRXA_H
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -