📄 lnsymsol.h
字号:
/* ARPACK++ v1.0 8/1/1997 c++ interface to ARPACK code. MODULE LNSymSol.h Template functions that exemplify how to print information about nonsymmetric standard and generalized eigenvalue problems. ARPACK Authors Richard Lehoucq Danny Sorensen Chao Yang Dept. of Computational & Applied Mathematics Rice University Houston, Texas*/#ifndef LNSYMSOL_H#define LNSYMSOL_H#include <math.h>#include "blas1c.h"#include "lapackc.h"#ifdef ARLNSMAT_H#include "arlsnsym.h"#include "arlgnsym.h"#elif defined ARUNSMAT_H#include "arusnsym.h"#include "arugnsym.h"#elif defined ARDNSMAT_H#include "ardsnsym.h"#include "ardgnsym.h"#else#include "arbsnsym.h"#include "arbgnsym.h"#endiftemplate<class MATRIX, class FLOAT>void Solution(MATRIX &A, ARluNonSymStdEig<FLOAT> &Prob)/* Prints eigenvalues and eigenvectors of nonsymmetric eigen-problems on standard "cout" stream.*/{ int i, n, nconv, mode; FLOAT *Ax; FLOAT *ResNorm; n = Prob.GetN(); nconv = Prob.ConvergedEigenvalues(); mode = Prob.GetMode(); cout << endl << endl << "Testing ARPACK++ class ARluNonSymStdEig \n"; cout << "Real nonsymmetric eigenvalue problem: A*x - lambda*x" << endl; switch (mode) { case 1: cout << "Regular mode" << endl << endl; break; case 3: cout << "Shift and invert mode" << endl << endl; } cout << "Dimension of the system : " << n << endl; cout << "Number of 'requested' eigenvalues : " << Prob.GetNev() << endl; cout << "Number of 'converged' eigenvalues : " << nconv << endl; cout << "Number of Arnoldi vectors generated: " << Prob.GetNcv() << endl; cout << "Number of iterations taken : " << Prob.GetIter() << endl; cout << endl; if (Prob.EigenvaluesFound()) { // Printing eigenvalues. cout << "Eigenvalues:" << endl; for (i=0; i<nconv; i++) { cout << " lambda[" << (i+1) << "]: " << Prob.EigenvalueReal(i); if (Prob.EigenvalueImag(i)>=0.0) { cout << " + " << Prob.EigenvalueImag(i) << " I" << endl; } else { cout << " - " << fabs(Prob.EigenvalueImag(i)) << " I" << endl; } } cout << endl; } if (Prob.EigenvectorsFound()) { // Printing the residual norm || A*x - lambda*x || // for the nconv accurately computed eigenvectors. Ax = new FLOAT[n]; ResNorm = new FLOAT[nconv+1]; for (i=0; i<nconv; i++) { if (Prob.EigenvalueImag(i)==0.0) { // Eigenvalue is real. A.MultMv(Prob.RawEigenvector(i), Ax); axpy(n, -Prob.EigenvalueReal(i), Prob.RawEigenvector(i), 1, Ax, 1); ResNorm[i] = nrm2(n, Ax, 1)/fabs(Prob.EigenvalueReal(i)); } else { // Eigenvalue is complex. A.MultMv(Prob.RawEigenvector(i), Ax); axpy(n, -Prob.EigenvalueReal(i), Prob.RawEigenvector(i), 1, Ax, 1); axpy(n, Prob.EigenvalueImag(i), Prob.RawEigenvector(i+1), 1, Ax, 1); ResNorm[i] = nrm2(n, Ax, 1); A.MultMv(Prob.RawEigenvector(i+1), Ax); axpy(n, -Prob.EigenvalueImag(i), Prob.RawEigenvector(i), 1, Ax, 1); axpy(n, -Prob.EigenvalueReal(i), Prob.RawEigenvector(i+1), 1, Ax, 1); ResNorm[i] = lapy2(ResNorm[i], nrm2(n, Ax, 1))/ lapy2(Prob.EigenvalueReal(i), Prob.EigenvalueImag(i)); ResNorm[i+1] = ResNorm[i]; i++; } } for (i=0; i<nconv; i++) { cout << "||A*x(" << (i+1) << ") - lambda(" << (i+1); cout << ")*x(" << (i+1) << ")||: " << ResNorm[i] << "\n"; } cout << "\n"; delete[] Ax; delete[] ResNorm; }} // Solutiontemplate<class MATRA, class MATRB, class FLOAT>void Solution(MATRA &A, MATRB &B, ARluNonSymGenEig<FLOAT> &Prob)/* Prints eigenvalues and eigenvectors of nonsymmetric generalized eigen-problems on standard "cout" stream.*/{ int i, n, nconv, mode; FLOAT *Ax; FLOAT *Bx, *Bx1; FLOAT *ResNorm; n = Prob.GetN(); nconv = Prob.ConvergedEigenvalues(); mode = Prob.GetMode(); cout << endl << endl << "Testing ARPACK++ class ARluNonSymGenEig \n"; cout << "Real nonsymmetric generalized eigenvalue problem: A*x - lambda*B*x"; cout << endl; switch (mode) { case 2: cout << "Regular mode" << endl; break; case 3: cout << "Shift and invert mode (using the real part of OP)" << endl; break; case 4: cout << "Shift and invert mode (using the imaginary part of OP)" << endl; } cout << endl; cout << "Dimension of the system : " << n << endl; cout << "Number of 'requested' eigenvalues : " << Prob.GetNev() << endl; cout << "Number of 'converged' eigenvalues : " << nconv << endl; cout << "Number of Arnoldi vectors generated: " << Prob.GetNcv() << endl; cout << "Number of iterations taken : " << Prob.GetIter() << endl; cout << endl; if (Prob.EigenvaluesFound()) { // Printing eigenvalues. cout << "Eigenvalues:" << endl; for (i=0; i<nconv; i++) { cout << " lambda[" << (i+1) << "]: " << Prob.EigenvalueReal(i); if (Prob.EigenvalueImag(i)>=0.0) { cout << " + " << Prob.EigenvalueImag(i) << " I" << endl; } else { cout << " - " << fabs(Prob.EigenvalueImag(i)) << " I" << endl; } } cout << endl; } if (Prob.EigenvectorsFound()) { // Printing the residual norm || A*x - lambda*B*x || // for the nconv accurately computed eigenvectors. Ax = new FLOAT[n]; Bx = new FLOAT[n]; Bx1 = new FLOAT[n]; ResNorm = new FLOAT[nconv+1]; for (i=0; i<nconv; i++) { if (Prob.EigenvalueImag(i)==0.0) { // Eigenvalue is real. A.MultMv(Prob.RawEigenvector(i), Ax); B.MultMv(Prob.RawEigenvector(i), Bx); axpy(n, -Prob.EigenvalueReal(i), Bx, 1, Ax, 1); ResNorm[i] = nrm2(n, Ax, 1)/fabs(Prob.EigenvalueReal(i)); } else { // Eigenvalue is complex. A.MultMv(Prob.RawEigenvector(i), Ax); B.MultMv(Prob.RawEigenvector(i), Bx); B.MultMv(Prob.RawEigenvector(i+1), Bx1); axpy(n, -Prob.EigenvalueReal(i), Bx, 1, Ax, 1); axpy(n, Prob.EigenvalueImag(i), Bx1, 1, Ax, 1); ResNorm[i] = nrm2(n, Ax, 1); A.MultMv(Prob.RawEigenvector(i+1), Ax); axpy(n, -Prob.EigenvalueImag(i), Bx, 1, Ax, 1); axpy(n, -Prob.EigenvalueReal(i), Bx1, 1, Ax, 1); ResNorm[i] = lapy2(ResNorm[i], nrm2(n, Ax, 1))/ lapy2(Prob.EigenvalueReal(i), Prob.EigenvalueImag(i)); ResNorm[i+1] = ResNorm[i]; i++; } } for (i=0; i<nconv; i++) { cout << "||A*x(" << i << ") - lambda(" << i; cout << ")*B*x(" << i << ")||: " << ResNorm[i] << "\n"; } cout << "\n"; delete[] Ax; delete[] Bx; delete[] Bx1; delete[] ResNorm; }} // Solution#endif // LNSYMSOL_H
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -