⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 asymshf.cc

📁 ARPACK is a collection of Fortran77 subroutines designed to solve large scale eigenvalue problems.
💻 CC
字号:
/*   ARPACK++ v1.0 8/1/1997   c++ interface to ARPACK code.   MODULE ASymShf.cc.   Example program that illustrates how to solve a real symmetric   standard eigenvalue problem in shift and invert mode using the   AREig function.   1) Problem description:      In this example we try to solve A*x = x*lambda in shift and      invert mode, where A is derived from the central difference      discretization of the one-dimensional Laplacian on [0, 1]      with zero Dirichlet boundary conditions.   2) Data structure used to represent matrix A:      {nnz, irow, pcol, A}: upper triangular part of matrix A                            stored in CSC format.   3) Library called by this example:      The SuperLU package is called by AREig to solve some linear      systems involving (A-sigma*I). This is needed to implement      the shift and invert strategy.   4) Included header files:      File             Contents      -----------      --------------------------------------------      lsmatrxb.h       SymmetricMatrixB, a function that generates                       matrix A in CSC format.      areig.h          The AREig function definition.      asymsol.h        The Solution function.   5) ARPACK Authors:      Richard Lehoucq      Kristyn Maschhoff      Danny Sorensen      Chao Yang      Dept. of Computational & Applied Mathematics      Rice University      Houston, Texas*/#include "lsmatrxb.h"#include "areig.h"#include "asymsol.h"main(){  // Defining variables;  int     n;           // Dimension of the problem.  int     nconv;       // Number of "converged" eigenvalues.  int     nnz;         // Number of nonzero elements in A.  int*    irow;        // pointer to an array that stores the row                       // indices of the nonzeros in A.  int*    pcol;        // pointer to an array of pointers to the                       // beginning of each column of A in vector A.  double* A;           // pointer to an array that stores the                       // nonzero elements of A.  double EigVal[101];  // Eigenvalues.  double EigVec[1001]; // Eigenvectors stored sequentially.  char    uplo;        // Variable that indicates whether the upper                       // (uplo='U') ot the lower (uplo='L') part of                       // A will be stored in A, irow and pcol.  // Creating a 100x100 matrix.  n = 100;  uplo = 'U';  SymmetricMatrixB(n, nnz, A, irow, pcol, uplo);  // Finding the four eigenvalues of A nearest to 1.0 and the  // related eigenvectors.  nconv = AREig(EigVal, EigVec, n, nnz, A, irow, pcol, uplo, 1.0, 4);  // Printing solution.  Solution(nconv, n, nnz, A, irow, pcol, uplo, EigVal, EigVec);} // main

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -