⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ansymreg.cc

📁 ARPACK is a collection of Fortran77 subroutines designed to solve large scale eigenvalue problems.
💻 CC
字号:
/*   ARPACK++ v1.0 8/1/1997   c++ interface to ARPACK code.   MODULE ANSymReg.cc.   Example program that illustrates how to solve a real   nonsymmetric standard eigenvalue problem in regular mode   using the AREig function.   1) Problem description:      In this example we try to solve A*x = x*lambda in regular mode,      where A is derived from the standard central difference      discretization of the 2-dimensional convection-diffusion operator                       (Laplacian u) + rho*(du/dx)      on a unit square with zero Dirichlet boundary conditions.   2) Data structure used to represent matrix A:      {nnzA, irowA, pcolA, valA}: matrix A data in CSC format.   3) Included header files:      File             Contents      -----------      -------------------------------------------      lnmatrxb.h       BlockTridMatrix, a function that generates                       matrix A in CSC format.      areig.h          The AREig function definition.      ansymsol.h       The Solution function.   4) ARPACK Authors:      Richard Lehoucq      Kristyn Maschhoff      Danny Sorensen      Chao Yang      Dept. of Computational & Applied Mathematics      Rice University      Houston, Texas*/#include "lnmatrxb.h"#include "areig.h"#include "ansymsol.h"main(){  // Defining variables;  int     nx;  int     n;           // Dimension of the problem.  int     nconv;       // Number of "converged" eigenvalues.  int     nnz;         // Number of nonzero elements in A.  int*    irow;        // pointer to an array that stores the row                       // indices of the nonzeros in A.  int*    pcol;        // pointer to an array of pointers to the                       // beginning of each column of A in vector A.  double* A;           // pointer to an array that stores the                       // nonzero elements of A.  double EigValR[101]; // Real part of the eigenvalues.  double EigValI[101]; // Imaginary part of the eigenvalues.  double EigVec[1001]; // Eigenvectors stored sequentially.  // Creating a double precision 100x100 matrix.  nx = 10;  BlockTridMatrix(nx, n, nnz, A, irow, pcol);  // Finding the four eigenvalues with largest magnitude and   // the related eigenvectors.  nconv = AREig(EigValR, EigValI, EigVec, n, nnz, A, irow, pcol, 4);  // Printing solution.  Solution(nconv, n, nnz, A, irow, pcol, EigValR, EigValI, EigVec);} // main.

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -