⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ansymsol.h

📁 ARPACK is a collection of Fortran77 subroutines designed to solve large scale eigenvalue problems.
💻 H
字号:
/*   ARPACK++ v1.0 8/1/1997   c++ interface to ARPACK code.   MODULE ANSymSol.cc   Template functions that exemplify how to print information   about nonsymmetric standard and generalized eigenvalue problems.   ARPACK Authors      Richard Lehoucq      Danny Sorensen      Chao Yang      Dept. of Computational & Applied Mathematics      Rice University      Houston, Texas*/#ifndef ANSYMSOL_H#define ANSYMSOL_H#include <math.h>#include "blas1c.h"#include "lapackc.h"#include "arlnsmat.h"template<class FLOAT, class INT>void Solution(INT nconv, INT n, INT nnz, FLOAT A[], INT irow[], INT pcol[],              FLOAT EigValR[], FLOAT EigValI[], FLOAT* EigVec = 0)/*  Prints eigenvalues and eigenvectors of nonsymmetric eigen-problem  on standard "cout" stream.*/{  INT                     i;  FLOAT*                  Ax;  FLOAT*                  ResNorm;  ARluNonSymMatrix<FLOAT> matrix(n, nnz, A, irow, pcol);  cout << endl << endl << "Testing ARPACK++ function AREig" << endl;  cout << "Real nonsymmetric eigenvalue problem: A*x - lambda*x \n \n";  cout << "Dimension of the system            : " << n     << endl;  cout << "Number of 'converged' eigenvalues  : " << nconv << endl << endl;  // Printing eigenvalues.  cout << "Eigenvalues:" << endl;  for (i=0; i<nconv; i++) {    cout << "  lambda[" << (i+1) << "]: " << EigValR[i];    if (EigValI[i]>=0.0) {      cout << " + " << EigValI[i] << " I" << endl;    }    else {      cout << " - " << fabs(EigValI[i]) << " I" << endl;    }  }  cout << endl;  // Printing eigenvectors.  if (EigVec != 0) {    // Finding the residual norm || A*x - lambda*x ||    // for the nconv accurately computed eigenvectors.    Ax      = new FLOAT[n];    ResNorm = new FLOAT[nconv+1];    for (i=0; i<nconv; i++) {      if (EigValI[i]==0.0) { // Eigenvalue is real.        matrix.MultMv(&EigVec[i*n], Ax);        axpy(n, -EigValR[i], &EigVec[i*n], 1, Ax, 1);        ResNorm[i] = nrm2(n, Ax, 1)/fabs(EigValR[i]);      }      else {                 // Eigenvalue is complex.        matrix.MultMv(&EigVec[i*n], Ax);        axpy(n, -EigValR[i], &EigVec[i*n], 1, Ax, 1);        axpy(n, EigValI[i], &EigVec[(i+1)*n], 1, Ax, 1);        ResNorm[i] = nrm2(n, Ax, 1);        matrix.MultMv(&EigVec[(i+1)*n], Ax);        axpy(n, -EigValI[i], &EigVec[i*n], 1, Ax, 1);        axpy(n, -EigValR[i], &EigVec[(i+1)*n], 1, Ax, 1);        ResNorm[i] = lapy2(ResNorm[i], nrm2(n, Ax, 1))/                     lapy2(EigValR[i], EigValI[i]);        ResNorm[i+1] = ResNorm[i];        i++;      }    }    for (i=0; i<nconv; i++) {      cout << "||A*x(" << (i+1) << ") - lambda(" << (i+1);      cout << ")*x(" << (i+1) << ")||: " << ResNorm[i] << endl;    }    cout << endl;    delete[] Ax;    delete[] ResNorm;  }} // Solution.template<class FLOAT, class INT>void Solution(INT nconv, INT n, INT nnzA, FLOAT A[], INT irowA[],              INT pcolA[], INT nnzB, FLOAT B[], INT irowB[], INT pcolB[],              FLOAT EigValR[], FLOAT EigValI[], FLOAT* EigVec = 0)/*  Prints eigenvalues and eigenvectors of nonsymmetric generalized  eigen-problem on standard "cout" stream.*/{  INT                     i;  FLOAT                   *Ax;  FLOAT                   *Bx, *Bx1;  FLOAT                   *ResNorm;  ARluNonSymMatrix<FLOAT> matrixA(n, nnzA, A, irowA, pcolA);  ARluNonSymMatrix<FLOAT> matrixB(n, nnzB, B, irowB, pcolB);  cout << endl << endl << "Testing ARPACK++ function AREig" << endl;  cout << "Real nonsymmetric generalized eigenvalue problem: A*x - lambda*B*x";  cout << endl << endl;  cout << "Dimension of the system            : " << n     << endl;  cout << "Number of 'converged' eigenvalues  : " << nconv << endl << endl;  // Printing eigenvalues.  cout << "Eigenvalues:" << endl;  for (i=0; i<nconv; i++) {    cout << "  lambda[" << (i+1) << "]: " << EigValR[i];    if (EigValI[i]>=0.0) {      cout << " + " << EigValI[i] << " I" << endl;    }    else {      cout << " - " << fabs(EigValI[i]) << " I" << endl;    }  }  cout << endl;  // Printing eigenvectors.  if (EigVec != 0) {    // Printing the residual norm || A*x - lambda*B*x ||    // for the nconv accurately computed eigenvectors.    Ax      = new FLOAT[n];    Bx      = new FLOAT[n];    Bx1     = new FLOAT[n];    ResNorm = new FLOAT[nconv+1];    for (i=0; i<nconv; i++) {      if (EigValI[i]==0.0) { // Eigenvalue is real.        matrixA.MultMv(&EigVec[i*n], Ax);        matrixB.MultMv(&EigVec[i*n], Bx);        axpy(n, -EigValR[i], Bx, 1, Ax, 1);        ResNorm[i] = nrm2(n, Ax, 1)/fabs(EigValR[i]);      }      else {                 // Eigenvalue is complex.        matrixA.MultMv(&EigVec[i*n], Ax);        matrixB.MultMv(&EigVec[i*n], Bx);        matrixB.MultMv(&EigVec[(i+1)*n], Bx1);        axpy(n, -EigValR[i], Bx, 1, Ax, 1);        axpy(n, EigValI[i], Bx1, 1, Ax, 1);        ResNorm[i] = nrm2(n, Ax, 1);        matrixA.MultMv(&EigVec[(i+1)*n], Ax);        axpy(n, -EigValI[i], Bx, 1, Ax, 1);        axpy(n, -EigValR[i], Bx1, 1, Ax, 1);        ResNorm[i] = lapy2(ResNorm[i], nrm2(n, Ax, 1))/                     lapy2(EigValR[i], EigValI[i]);        ResNorm[i+1] = ResNorm[i];        i++;      }    }    for (i=0; i<nconv; i++) {      cout << "||A*x(" << i << ") - lambda(" << i;      cout << ")*B*x(" << i << ")||: " << ResNorm[i] << endl;    }    cout << endl;    delete[] Ax;    delete[] Bx;    delete[] Bx1;    delete[] ResNorm;  }} // Solution.#endif // ANSYMSOL_H

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -