📄 ansymgsc.cc
字号:
/* ARPACK++ v1.0 8/1/1997 c++ interface to ARPACK code. MODULE ANSymGSC.cc. Example program that illustrates how to solve a nonsymmetric generalized eigenvalue problem in complex shift and invert mode (taking the real part of OP*x) using the AREig function. 1) Problem description: In this example we try to solve A*x = B*x*lambda in complex shift and inverse mode, where A is the tridiagonal matrix with 2 on the diagonal, -2 on the subdiagonal and 3 on the superdiagonal, and B is the tridiagonal matrix with 4 on the diagonal and 1 on the off-diagonals. The shift is a complex number. 2) Data structure used to represent matrices A and B: {nnzA, irowA, pcolA, valA}: matrix A data in CSC format. {nnzA, irowA, pcolA, valA}: matrix B data in CSC format. 3) Library called by this example: The SuperLU package is called by AREig to solve some complex linear systems involving (A-sigma*B). This is needed to implement the shift and invert strategy. 4) Included header files: File Contents ----------- ----------------------------------------- lnmatrxe.h NonSymMatrixE, a function that generates matrix A in CSC format. lnmatrxf.h NonSymMatrixF, a function tha generates matrix B in CSC format. areig.h The AREig function definition. ansymsol.h The Solution function. 5) ARPACK Authors: Richard Lehoucq Kristyn Maschhoff Danny Sorensen Chao Yang Dept. of Computational & Applied Mathematics Rice University Houston, Texas*/#include "lnmatrxe.h"#include "lnmatrxf.h"#include "areig.h"#include "ansymsol.h"main(){ // Defining variables; int n; // Dimension of the problem. int nconv; // Number of "converged" eigenvalues. int nnzA, nnzB; // Number of nonzero elements in A and B. int *irowA, *irowB; // pointers to arrays that store the row // indices of the nonzeros in A and B. int *pcolA, *pcolB; // pointers to arrays of pointers to the // beginning of each column of A and B in // valA and ValB. float *valA, *valB; // pointers to arrays that store the // nonzero elements of A and B. float EigValR[101]; // Real part of the eigenvalues. float EigValI[101]; // Imaginary part of the eigenvalues. float EigVec[1201]; // Eigenvectors stored sequentially. // Creating matrices A and B. n = 100; // Dimension of A and B. NonSymMatrixE(n, nnzA, valA, irowA, pcolA); NonSymMatrixF(n, nnzB, valB, irowB, pcolB); // Finding the four eigenvalues neares to 0.4 + 0.6I // and the related eigenvectors. nconv = AREig(EigValR, EigValI, EigVec, n, nnzA, valA, irowA, pcolA, nnzB, valB, irowB, pcolB, 'R', (float)0.4, (float)0.6, 4); // Printing solution. Solution(nconv, n, nnzA, valA, irowA, pcolA, nnzB, valB, irowB, pcolB, EigValR, EigValI, EigVec);} // main.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -