⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ansymgsc.cc

📁 ARPACK is a collection of Fortran77 subroutines designed to solve large scale eigenvalue problems.
💻 CC
字号:
/*   ARPACK++ v1.0 8/1/1997   c++ interface to ARPACK code.   MODULE ANSymGSC.cc.   Example program that illustrates how to solve a nonsymmetric   generalized eigenvalue problem in complex shift and invert mode   (taking the real part of OP*x) using the AREig function.   1) Problem description:      In this example we try to solve A*x = B*x*lambda in complex shift      and inverse mode, where A is the tridiagonal matrix with 2 on the      diagonal, -2 on the subdiagonal and 3 on the superdiagonal, and      B is the tridiagonal matrix with 4 on the diagonal and 1 on the      off-diagonals.      The shift is a complex number.   2) Data structure used to represent matrices A and B:      {nnzA, irowA, pcolA, valA}: matrix A data in CSC format.      {nnzA, irowA, pcolA, valA}: matrix B data in CSC format.   3) Library called by this example:      The SuperLU package is called by AREig to solve some complex       linear systems involving (A-sigma*B). This is needed to       implement the shift and invert strategy.   4) Included header files:      File             Contents      -----------      -----------------------------------------      lnmatrxe.h       NonSymMatrixE, a function that generates                       matrix A in CSC format.      lnmatrxf.h       NonSymMatrixF, a function tha generates                       matrix B in CSC format.      areig.h          The AREig function definition.      ansymsol.h       The Solution function.   5) ARPACK Authors:      Richard Lehoucq      Kristyn Maschhoff      Danny Sorensen      Chao Yang      Dept. of Computational & Applied Mathematics      Rice University      Houston, Texas*/#include "lnmatrxe.h"#include "lnmatrxf.h"#include "areig.h"#include "ansymsol.h"main(){  // Defining variables;  int     n;               // Dimension of the problem.  int     nconv;           // Number of "converged" eigenvalues.  int     nnzA,   nnzB;    // Number of nonzero elements in A and B.  int     *irowA, *irowB;  // pointers to arrays that store the row                           // indices of the nonzeros in A and B.  int     *pcolA, *pcolB;  // pointers to arrays of pointers to the                           // beginning of each column of A and B in                           // valA and ValB.  float   *valA,  *valB;   // pointers to arrays that store the                           // nonzero elements of A and B.  float  EigValR[101];     // Real part of the eigenvalues.  float  EigValI[101];     // Imaginary part of the eigenvalues.  float  EigVec[1201];     // Eigenvectors stored sequentially.  // Creating matrices A and B.  n  = 100;  // Dimension of A and B.  NonSymMatrixE(n, nnzA, valA, irowA, pcolA);  NonSymMatrixF(n, nnzB, valB, irowB, pcolB);  // Finding the four eigenvalues neares to 0.4 + 0.6I   // and the related eigenvectors.  nconv = AREig(EigValR, EigValI, EigVec, n, nnzA, valA,                 irowA, pcolA, nnzB, valB, irowB, pcolB,                 'R', (float)0.4, (float)0.6, 4);  // Printing solution.  Solution(nconv, n, nnzA, valA, irowA, pcolA, nnzB,           valB, irowB, pcolB, EigValR, EigValI, EigVec);} // main.

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -