📄 cmatrixb.h
字号:
/* ARPACK++ v1.0 8/1/1997 c++ interface to ARPACK code. MODULE CMatrixB.h Class template for the tridiagonal matrix derived from the standard central difference of the 1-d convection diffusion operator u" + rho*u' on the interval [0, 1] with zero Dirichlet boundary conditions. ARPACK Authors Richard Lehoucq Danny Sorensen Chao Yang Dept. of Computational & Applied Mathematics Rice University Houston, Texas*/#ifndef CMATRIXB_H#define CMATRIXB_H#include "arcomp.h"#include "matprod.h"#include "blas1c.h"#include "lapackc.h"template<class T>class CompMatrixB: public MatrixWithProduct<arcomplex<T> > { private: arcomplex<T> rho; arcomplex<T> shift; arcomplex<T> *Ad, *Adl, *Adu, *Adu2; int *ipiv; int decsize; void FactorDataDeallocate(); public: void FactorOP(); void MultMv(arcomplex<T>* v, arcomplex<T>* w); void MultOPv(arcomplex<T>* v, arcomplex<T>* w); CompMatrixB(int nv, arcomplex<T> rhov); CompMatrixB(int nv, arcomplex<T> shiftv, arcomplex<T> rhov); virtual ~CompMatrixB();}; // CompMatrixB.template<class T>inline void CompMatrixB<T>::FactorDataDeallocate()/* Eliminates the data structure used on matrix factorization.*/{ delete[] Ad; delete[] Adl; delete[] Adu; delete[] Adu2; delete[] ipiv;} // FactorDataDeallocate.template<class T>void CompMatrixB<T>::FactorOP()/* Factors (M-shift*I).*/{ int j, ierr; arcomplex<T> h, h2, s, s1, s2, s3; const arcomplex<T> one(1.0, 0.0); const arcomplex<T> two(2.0, 0.0); if (decsize != ncols()) { decsize = ncols(); FactorDataDeallocate(); Ad = new arcomplex<T>[ncols()]; Adl = new arcomplex<T>[ncols()]; Adu = new arcomplex<T>[ncols()]; Adu2 = new arcomplex<T>[ncols()]; ipiv = new int[ncols()]; } h = one/arcomplex<T>((ncols()+1),0.0); h2 = h*h; s = rho/two; s1 = -one/h2 - s/h; s2 = two/h2 - shift; s3 = -one/h2 + s/h; for (j=0; j<ncols()-1; j++) { Adl[j] = s1; Ad[j] = s2; Adu[j] = s3; } Ad[ncols()-1] = s2; gttrf(ncols(), Adl, Ad, Adu, Adu2, ipiv, ierr);} // FactorOP.template<class T>void CompMatrixB<T>::MultMv(arcomplex<T>* v, arcomplex<T>* w)/* Computes the matrix-vector multiplication w <- A*v.*/{ int j; arcomplex<T> dd, dl, du, s, h, h2; const arcomplex<T> one( 1.0, 0.0); const arcomplex<T> two( 2.0, 0.0); h = one/arcomplex<T>((ncols()+1),0.0); h2 = h*h; s = rho/two; dd = two/h2; dl = -one/h2 - s/h; du = -one/h2 + s/h; w[0] = dd*v[0] + du*v[1]; for (j=1; j<ncols()-1; j++) { w[j] = dl*v[j-1] + dd*v[j] + du*v[j+1]; } w[ncols()-1] = dl*v[ncols()-2] + dd*v[ncols()-1];} // MultMv.template<class T>void CompMatrixB<T>::MultOPv(arcomplex<T>* v, arcomplex<T>* w)/* Computes the matrix-vector product w <- inv(M-shift*I)*v.*/{ int ierr; char *type = "N"; copy(ncols(), v, 1, w, 1); gttrs(type, ncols(), 1, Adl, Ad, Adu, Adu2, ipiv, w, ncols(), ierr);} // MultOPv.template<class T>inline CompMatrixB<T>::CompMatrixB(int nval, arcomplex<T> rhov): MatrixWithProduct<arcomplex<T> >(nval)/* Constructor*/{ decsize = 0; Ad = 0; Adl = 0; Adu = 0; Adu2 = 0; ipiv = 0; shift = 0.0; rho = rhov;} // Constructor.template<class T>inline CompMatrixB<T>::CompMatrixB(int nv, arcomplex<T> shiftv, arcomplex<T> rhov): MatrixWithProduct<arcomplex<T> >(nv)/* Constructor with shift*/{ decsize = 0; Ad = 0; Adl = 0; Adu = 0; Adu2 = 0; ipiv = 0; shift = shiftv; rho = rhov; FactorOP();} // Constructor with shift.template<class T>inline CompMatrixB<T>::~CompMatrixB()/* Destructor*/{ FactorDataDeallocate();} // Destructor.#endif // CMATRIXB_H
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -