⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cmatrixb.h

📁 ARPACK is a collection of Fortran77 subroutines designed to solve large scale eigenvalue problems.
💻 H
字号:
/*   ARPACK++ v1.0 8/1/1997   c++ interface to ARPACK code.   MODULE CMatrixB.h   Class template for the tridiagonal matrix derived from    the standard central difference of the 1-d convection diffusion    operator u" + rho*u' on the interval [0, 1] with zero   Dirichlet boundary conditions.   ARPACK Authors      Richard Lehoucq      Danny Sorensen      Chao Yang      Dept. of Computational & Applied Mathematics      Rice University      Houston, Texas*/#ifndef CMATRIXB_H#define CMATRIXB_H#include "arcomp.h"#include "matprod.h"#include "blas1c.h"#include "lapackc.h"template<class T>class CompMatrixB: public MatrixWithProduct<arcomplex<T> > { private:  arcomplex<T> rho;  arcomplex<T> shift;  arcomplex<T> *Ad, *Adl, *Adu, *Adu2;  int          *ipiv;  int          decsize;  void FactorDataDeallocate(); public:  void FactorOP();  void MultMv(arcomplex<T>* v, arcomplex<T>* w);  void MultOPv(arcomplex<T>* v, arcomplex<T>* w);  CompMatrixB(int nv, arcomplex<T> rhov);  CompMatrixB(int nv, arcomplex<T> shiftv, arcomplex<T> rhov);  virtual ~CompMatrixB();}; // CompMatrixB.template<class T>inline void CompMatrixB<T>::FactorDataDeallocate()/*  Eliminates the data structure used on matrix factorization.*/{  delete[] Ad;  delete[] Adl;  delete[] Adu;  delete[] Adu2;  delete[] ipiv;} // FactorDataDeallocate.template<class T>void CompMatrixB<T>::FactorOP()/*  Factors (M-shift*I).*/{  int          j, ierr;  arcomplex<T> h, h2, s, s1, s2, s3;  const arcomplex<T> one(1.0, 0.0);  const arcomplex<T> two(2.0, 0.0);  if (decsize != ncols()) {    decsize = ncols();    FactorDataDeallocate();    Ad   = new arcomplex<T>[ncols()];    Adl  = new arcomplex<T>[ncols()];    Adu  = new arcomplex<T>[ncols()];    Adu2 = new arcomplex<T>[ncols()];    ipiv = new int[ncols()];  }  h  = one/arcomplex<T>((ncols()+1),0.0);  h2 = h*h;  s  = rho/two;  s1 = -one/h2 - s/h;  s2 = two/h2 - shift;  s3 = -one/h2 + s/h;  for (j=0; j<ncols()-1; j++) {    Adl[j] = s1;    Ad[j]  = s2;    Adu[j] = s3;  }  Ad[ncols()-1]  = s2;  gttrf(ncols(), Adl, Ad, Adu, Adu2, ipiv, ierr);} // FactorOP.template<class T>void CompMatrixB<T>::MultMv(arcomplex<T>* v, arcomplex<T>* w)/*  Computes the matrix-vector multiplication w <- A*v.*/{  int          j;  arcomplex<T> dd, dl, du, s, h, h2;  const arcomplex<T> one( 1.0, 0.0);  const arcomplex<T> two( 2.0, 0.0);  h  = one/arcomplex<T>((ncols()+1),0.0);  h2 = h*h;  s  = rho/two;  dd = two/h2;  dl = -one/h2 - s/h;  du = -one/h2 + s/h;  w[0] = dd*v[0] + du*v[1];  for (j=1; j<ncols()-1; j++) {    w[j] = dl*v[j-1] + dd*v[j] + du*v[j+1];  }  w[ncols()-1] = dl*v[ncols()-2] + dd*v[ncols()-1];} //  MultMv.template<class T>void CompMatrixB<T>::MultOPv(arcomplex<T>* v, arcomplex<T>* w)/*  Computes the matrix-vector product w <- inv(M-shift*I)*v.*/{  int  ierr;  char *type = "N";  copy(ncols(), v, 1, w, 1);  gttrs(type, ncols(), 1, Adl, Ad, Adu, Adu2, ipiv, w, ncols(), ierr);} // MultOPv.template<class T>inline CompMatrixB<T>::CompMatrixB(int nval, arcomplex<T> rhov):  MatrixWithProduct<arcomplex<T> >(nval)/*  Constructor*/{  decsize = 0;  Ad      = 0;  Adl     = 0;  Adu     = 0;  Adu2    = 0;  ipiv    = 0;  shift   = 0.0;  rho     = rhov;} // Constructor.template<class T>inline CompMatrixB<T>::CompMatrixB(int nv, arcomplex<T> shiftv, arcomplex<T> rhov):  MatrixWithProduct<arcomplex<T> >(nv)/*  Constructor with shift*/{  decsize = 0;  Ad      = 0;  Adl     = 0;  Adu     = 0;  Adu2    = 0;  ipiv    = 0;  shift   = shiftv;  rho     = rhov;  FactorOP();} // Constructor with shift.template<class T>inline CompMatrixB<T>::~CompMatrixB()/*  Destructor*/{  FactorDataDeallocate();} // Destructor.#endif // CMATRIXB_H

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -