⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 nmatrixb.h

📁 ARPACK is a collection of Fortran77 subroutines designed to solve large scale eigenvalue problems.
💻 H
字号:
/*   ARPACK++ v1.0 8/1/1997   c++ interface to ARPACK code.   MODULE NMatrixB.h   Class template for the tridiagonal matrix derived from   the standard central difference discretization of the 1-d    convection diffusion operator u" + rho*u' on the interval    [0, 1] with zero Dirichlet boundary conditions.   ARPACK Authors      Richard Lehoucq      Danny Sorensen      Chao Yang      Dept. of Computational & Applied Mathematics      Rice University      Houston, Texas*/#ifndef NMATRIXB_H#define NMATRIXB_H#include "matprod.h"#include "blas1c.h"#include "lapackc.h"template<class T>class NonSymMatrixB: public MatrixWithProduct<T> { private:  T    rho;  T    shift;  T    *Ad, *Adl, *Adu, *Adu2;  int  *ipiv;  int  decsize;  void FactorDataDeallocate(); public:  void FactorOP();  void MultMv(T* v, T* w);  void MultOPv(T* v, T* w);  NonSymMatrixB(int nv, T rhov);  NonSymMatrixB(int nv, T shiftv, T rhov);  virtual ~NonSymMatrixB();}; // NonSymMatrixB.template<class T>inline void NonSymMatrixB<T>::FactorDataDeallocate()// Eliminates the data structure used on matrix factorization.{  delete[] Ad;  delete[] Adl;  delete[] Adu;  delete[] Adu2;  delete[] ipiv;} // FactorDataDeallocate.template<class T>void NonSymMatrixB<T>::FactorOP()/*  Factors (M-shift*I).*/{  int  j, ierr;  T    h, s, s1, s2, s3;  const T one = 1.0;  const T two = 2.0;  if (decsize != ncols()) {    decsize = ncols();    FactorDataDeallocate();    Ad   = new T[ncols()];    Adl  = new T[ncols()];    Adu  = new T[ncols()];    Adu2 = new T[ncols()];    ipiv = new int[ncols()];  }  h  = one/T(ncols()+1);  s  = rho*h/two;  s1 = -one - s;  s2 = two - shift;  s3 = -one + s;  for (j=0; j<ncols()-1; j++) {    Adl[j] = s1;    Ad[j]  = s2;    Adu[j] = s3;  }  Ad[ncols()-1]  = s2;  gttrf(ncols(), Adl, Ad, Adu, Adu2, ipiv, ierr);} // FactorOP.template<class T>void NonSymMatrixB<T>::MultMv(T* v, T* w)/*  Performs the matrix-vector multiplication w <- A*v.*/{  int  j;  T    dd, dl, du, s, h;  const T one = 1.0;  const T two = 2.0;  h  = one/T(ncols()+1);  s  = rho*h/two;  dd = two;  dl = -one - s;  du = -one + s;  w[0] = dd*v[0] + du*v[1];  for (j=1; j<ncols()-1; j++) {    w[j] = dl*v[j-1] + dd*v[j] + du*v[j+1];  }  w[ncols()-1] = dl*v[ncols()-2] + dd*v[ncols()-1];  return;} //  MultMv.template<class T>void NonSymMatrixB<T>::MultOPv(T* v, T* w)/*  Performs the matrix-vector product w <- inv(M-shift*I)*v.*/{  int  ierr;  char *type = "N";  copy(ncols(), v, 1, w, 1);  gttrs(type, ncols(), 1, Adl, Ad, Adu, Adu2, ipiv, w, ncols(), ierr);} // MultOPvtemplate<class T>inline NonSymMatrixB<T>::NonSymMatrixB(int nval, T rhov): MatrixWithProduct<T>(nval)/*  Constructor*/{  rho     = rhov;  decsize = 0;  Ad      = 0;  Adl     = 0;  Adu     = 0;  Adu2    = 0;  ipiv    = 0;  shift   = 0.0;} // Constructor.template<class T>inline NonSymMatrixB<T>::NonSymMatrixB(int nv, T shiftv, T rhov): MatrixWithProduct<T>(nv)/*  Constructor with shift.*/{  rho     = rhov;  decsize = 0;  Ad      = 0;  Adl     = 0;  Adu     = 0;  Adu2    = 0;  ipiv    = 0;  shift   = shiftv;  FactorOP();} // Constructor with shift.template<class T>inline NonSymMatrixB<T>::~NonSymMatrixB()/*  Destructor.*/{  FactorDataDeallocate();} // Destructor.#endif // NMATRIXB_H

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -