⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 lcompgre.cc

📁 ARPACK is a collection of Fortran77 subroutines designed to solve large scale eigenvalue problems.
💻 CC
字号:
/*   ARPACK++ v1.0 8/1/1997   c++ interface to ARPACK code.   MODULE LCompGRe.cc.   Example program that illustrates how to solve a complex generalized   eigenvalue problem in regular mode using the ARluCompGenEig class.   1) Problem description:      In this example we try to solve A*x = B*x*lambda in regular mode,      where A and B are derived from the finite element discretization      of the 1-dimensional convection-diffusion operator                       (d^2u/dx^2) + rho*(du/dx)      on the interval [0,1], with zero boundary conditions, using      piecewise linear elements.   2) Data structure used to represent matrices A and B:      {nnzA, irowA, pcolA, valA}: matrix A data in CSC format.      {nnzA, irowA, pcolA, valA}: matrix B data in CSC format.   3) Library called by this example:      The SuperLU package is called by ARluCompGenEig to solve      some linear systems involving B.   4) Included header files:      File             Contents      -----------      ---------------------------------------------      lcmatrxe.h       CompMatrixE, a function that generates matrix                       A in CSC format.      lcmatrxf.h       CompMatrixF, a function that generates matrix                       B in CSC format.      arlnsmat.h       The ARluNonSymMatrix class definition.      arlgcomp.h       The ARluCompGenEig class definition.      lcompsol.h       The Solution function.      arcomp.h         The "arcomplex" (complex) type definition.   5) ARPACK Authors:      Richard Lehoucq      Kristyn Maschhoff      Danny Sorensen      Chao Yang      Dept. of Computational & Applied Mathematics      Rice University      Houston, Texas*/#include "arcomp.h"#include "arlnsmat.h"#include "lcmatrxe.h"#include "lcmatrxf.h"#include "arlgcomp.h"#include "lcompsol.h"main(){  // Defining variables;  int     n;                      // Dimension of the problem.  int     nnza,   nnzb;           // Number of nonzero elements in A and B.  int     *irowa, *irowb;         // pointers to arrays that store the row                                  // indices of the nonzeros in A and B.  int     *pcola, *pcolb;         // pointers to arrays of pointers to the                                  // beginning of each column of A and B in                                  // valA and ValB.  arcomplex<double> rho;          // parameter used in CompMatrixE.  arcomplex<double> *valA, *valB; // pointers to arrays that store the                                  // nonzero elements of A and B.  // Creating complex matrices A and B.  n   =  100;  rho = arcomplex<double>(10.0, 0.0);  CompMatrixE(n, rho, nnza, valA, irowa, pcola);  ARluNonSymMatrix<arcomplex<double> > A(n, nnza, valA, irowa, pcola);  CompMatrixF(n, nnzb, valB, irowb, pcolb);  ARluNonSymMatrix<arcomplex<double> > B(n, nnzb, valB, irowb, pcolb); // Defining what we need: the four eigenvectors with largest magnitude.  ARluCompGenEig<double> dprob(4L, A, B);  // Finding eigenvalues and eigenvectors.  dprob.FindEigenvectors();  // Printing solution.  Solution(A, B, dprob);} // main.

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -