📄 lcompgre.cc
字号:
/* ARPACK++ v1.0 8/1/1997 c++ interface to ARPACK code. MODULE LCompGRe.cc. Example program that illustrates how to solve a complex generalized eigenvalue problem in regular mode using the ARluCompGenEig class. 1) Problem description: In this example we try to solve A*x = B*x*lambda in regular mode, where A and B are derived from the finite element discretization of the 1-dimensional convection-diffusion operator (d^2u/dx^2) + rho*(du/dx) on the interval [0,1], with zero boundary conditions, using piecewise linear elements. 2) Data structure used to represent matrices A and B: {nnzA, irowA, pcolA, valA}: matrix A data in CSC format. {nnzA, irowA, pcolA, valA}: matrix B data in CSC format. 3) Library called by this example: The SuperLU package is called by ARluCompGenEig to solve some linear systems involving B. 4) Included header files: File Contents ----------- --------------------------------------------- lcmatrxe.h CompMatrixE, a function that generates matrix A in CSC format. lcmatrxf.h CompMatrixF, a function that generates matrix B in CSC format. arlnsmat.h The ARluNonSymMatrix class definition. arlgcomp.h The ARluCompGenEig class definition. lcompsol.h The Solution function. arcomp.h The "arcomplex" (complex) type definition. 5) ARPACK Authors: Richard Lehoucq Kristyn Maschhoff Danny Sorensen Chao Yang Dept. of Computational & Applied Mathematics Rice University Houston, Texas*/#include "arcomp.h"#include "arlnsmat.h"#include "lcmatrxe.h"#include "lcmatrxf.h"#include "arlgcomp.h"#include "lcompsol.h"main(){ // Defining variables; int n; // Dimension of the problem. int nnza, nnzb; // Number of nonzero elements in A and B. int *irowa, *irowb; // pointers to arrays that store the row // indices of the nonzeros in A and B. int *pcola, *pcolb; // pointers to arrays of pointers to the // beginning of each column of A and B in // valA and ValB. arcomplex<double> rho; // parameter used in CompMatrixE. arcomplex<double> *valA, *valB; // pointers to arrays that store the // nonzero elements of A and B. // Creating complex matrices A and B. n = 100; rho = arcomplex<double>(10.0, 0.0); CompMatrixE(n, rho, nnza, valA, irowa, pcola); ARluNonSymMatrix<arcomplex<double> > A(n, nnza, valA, irowa, pcola); CompMatrixF(n, nnzb, valB, irowb, pcolb); ARluNonSymMatrix<arcomplex<double> > B(n, nnzb, valB, irowb, pcolb); // Defining what we need: the four eigenvectors with largest magnitude. ARluCompGenEig<double> dprob(4L, A, B); // Finding eigenvalues and eigenvectors. dprob.FindEigenvectors(); // Printing solution. Solution(A, B, dprob);} // main.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -