📄 lsymgshf.cc
字号:
/* ARPACK++ v1.0 8/1/1997 c++ interface to ARPACK code. MODULE LSymGShf.cc. Example program that illustrates how to solve a real symmetric generalized eigenvalue problem in shift and invert mode using the ARluSymGenEig class. 1) Problem description: In this example we try to solve A*x = B*x*lambda in shift and invert mode, where A and B are obtained from the finite element discretization of the 1-dimensional discrete Laplacian d^2u / dx^2 on the interval [0,1] with zero Dirichlet boundary conditions using piecewise linear elements. 2) Data structure used to represent matrices A and B: {nnzA, irowA, pcolA, valA}: lower triangular part of matrix A stored in CSC format. {nnzB, irowB, pcolB, valB}: lower triangular part of matrix B stored in CSC format. 3) Library called by this example: The SuperLU package is called by ARluSymGenEig to solve some linear systems involving (A-sigma*B). 4) Included header files: File Contents ----------- ------------------------------------------- lsmatrxc.h SymmetricMatrixC, a function that generates matrix A in CSC format. lsmatrxd.h SymmetricMatrixD, a function that generates matrix B in CSC format. arlsmat.h The ARluSymMatrix class definition. arlgsym.h The ARluSymGenEig class definition. lsymsol.h The Solution function. 5) ARPACK Authors: Richard Lehoucq Kristyn Maschhoff Danny Sorensen Chao Yang Dept. of Computational & Applied Mathematics Rice University Houston, Texas*/#include "lsmatrxc.h"#include "lsmatrxd.h"#include "arlsmat.h"#include "arlgsym.h"#include "lsymsol.h"main(){ int n; // Dimension of the problem. int nnzA, nnzB; // Number of nonzero elements in A and B. int *irowA, *irowB; // pointer to an array that stores the row // indices of the nonzeros in A and B. int *pcolA, *pcolB; // pointer to an array of pointers to the // beginning of each column of A (B) in valA (valB). double *valA, *valB; // pointer to an array that stores the nonzero // elements of A and B. // Creating matrices A and B. n = 100; SymmetricMatrixC(n, nnzA, valA, irowA, pcolA); ARluSymMatrix<double> A(n, nnzA, valA, irowA, pcolA); SymmetricMatrixD(n, nnzB, valB, irowB, pcolB); ARluSymMatrix<double> B(n, nnzB, valB, irowB, pcolB); // Defining what we need: the four eigenvectors nearest to 0.0. ARluSymGenEig<double> dprob('S', 4L, A, B, 0.0); // Finding eigenvalues and eigenvectors. dprob.FindEigenvectors(); // Printing solution. Solution(A, B, dprob);} // main.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -