⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 lsymshf.cc

📁 ARPACK is a collection of Fortran77 subroutines designed to solve large scale eigenvalue problems.
💻 CC
字号:
/*   ARPACK++ v1.0 8/1/1997   c++ interface to ARPACK code.   MODULE LSymShf.cc.   Example program that illustrates how to solve a real symmetric   standard eigenvalue problem in shift and invert mode using the   ARluSymStdEig class.   1) Problem description:      In this example we try to solve A*x = x*lambda in shift and        invert mode, where A is derived from the central difference       discretization of the one-dimensional Laplacian on [0, 1]      with zero Dirichlet boundary conditions.   2) Data structure used to represent matrix A:      {nnz, irow, pcol, A}: lower triangular part of matrix A                             stored in CSC format.   3) Library called by this example:      The SuperLU package is called by ARluSymStdEig to solve      some linear systems involving (A-sigma*I). This is needed to      implement the shift and invert strategy.   4) Included header files:      File             Contents      -----------      --------------------------------------------      lsmatrxa.h       SymmetricMatrixB, a function that generates                       matrix A in CSC format.      arlsmat.h        The ARluSymMatrix class definition.      arlssym.h        The ARluSymStdEig class definition.      lsymsol.h        The Solution function.   5) ARPACK Authors:      Richard Lehoucq      Kristyn Maschhoff      Danny Sorensen      Chao Yang      Dept. of Computational & Applied Mathematics      Rice University      Houston, Texas*/#include "lsmatrxb.h"#include "arlsmat.h"#include "arlssym.h"#include "lsymsol.h"main(){  // Defining variables;  int     n;          // Dimension of the problem.  int     nnz;        // Number of nonzero elements in A.  int*    irow;       // pointer to an array that stores the row                      // indices of the nonzeros in A.  int*    pcol;       // pointer to an array of pointers to the                      // beginning of each column of A in vector A.  double* A;          // pointer to an array that stores the                      // nonzero elements of A.  // Creating a 100x100 matrix.  n = 100;  SymmetricMatrixB(n, nnz, A, irow, pcol);  ARluSymMatrix<double> matrix(n, nnz, A, irow, pcol);  // Defining what we need: the four eigenvectors of A nearest to 1.0.  ARluSymStdEig<double> dprob(4L, matrix, 1.0);  // Finding eigenvalues and eigenvectors.  dprob.FindEigenvectors();  // Printing solution.  Solution(matrix, dprob);} // main

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -