📄 lnsymgsc.cc
字号:
/* ARPACK++ v1.0 8/1/1997 c++ interface to ARPACK code. MODULE LNSymGSC.cc. Example program that illustrates how to solve a nonsymmetric generalized eigenvalue problem in complex shift and invert mode (taking the real part of OP*x) using the ARluNonSymGenEig class. 1) Problem description: In this example we try to solve A*x = B*x*lambda in complex shift and inverse mode, where A is the tridiagonal matrix with 2 on the diagonal, -2 on the subdiagonal and 3 on the superdiagonal, and B is the tridiagonal matrix with 4 on the diagonal and 1 on the off-diagonals. The shift is a complex number. 2) Data structure used to represent matrices A and B: {nnzA, irowA, pcolA, valA}: matrix A data in CSC format. {nnzA, irowA, pcolA, valA}: matrix B data in CSC format. 3) Library called by this example: The SuperLU package is called by ARluNonSymGenEig to solve some complex linear systems involving (A-sigma*B). This is needed to implement the shift and invert strategy. 4) Included header files: File Contents ----------- ----------------------------------------- lnmatrxe.h NonSymMatrixE, a function that generates matrix A in CSC format. lnmatrxf.h NonSymMatrixF, a function tha generates matrix B in CSC format. arlnsmat.h The ARluNonSymMatrix class definition. arlgnsym.h The ARluNonSymGenEig class definition. lnsymsol.h The Solution function. 5) ARPACK Authors: Richard Lehoucq Kristyn Maschhoff Danny Sorensen Chao Yang Dept. of Computational & Applied Mathematics Rice University Houston, Texas*/#include "lnmatrxe.h"#include "lnmatrxf.h"#include "arlnsmat.h"#include "arlgnsym.h"#include "lnsymsol.h"main(){ // Defining variables; int n; // Dimension of the problem. int nnza, nnzb; // Number of nonzero elements in A and B. int *irowa, *irowb; // pointers to arrays that store the row // indices of the nonzeros in A and B. int *pcola, *pcolb; // pointers to arrays of pointers to the // beginning of each column of A and B in // valA and valB. double *valA, *valB; // pointers to arrays that store the // nonzero elements of A and B. // Creating matrices A and B. n = 100; NonSymMatrixE(n, nnza, valA, irowa, pcola); ARluNonSymMatrix<double> A(n, nnza, valA, irowa, pcola); NonSymMatrixF(n, nnzb, valB, irowb, pcolb); ARluNonSymMatrix<double> B(n, nnzb, valB, irowb, pcolb); // Defining what we need: the four eigenvectors nearest to 0.4 + 0.6i. ARluNonSymGenEig<double> dprob(4L, A, B, 'R', 0.4, 0.6); // Finding eigenvalues and eigenvectors. dprob.FindEigenvectors(); // Printing solution. Solution(A, B, dprob);} // main.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -