⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 lnsymgsc.cc

📁 ARPACK is a collection of Fortran77 subroutines designed to solve large scale eigenvalue problems.
💻 CC
字号:
/*   ARPACK++ v1.0 8/1/1997   c++ interface to ARPACK code.   MODULE LNSymGSC.cc.   Example program that illustrates how to solve a nonsymmetric   generalized eigenvalue problem in complex shift and invert mode   (taking the real part of OP*x) using the ARluNonSymGenEig class.   1) Problem description:      In this example we try to solve A*x = B*x*lambda in complex shift      and inverse mode, where A is the tridiagonal matrix with 2 on the      diagonal, -2 on the subdiagonal and 3 on the superdiagonal, and      B is the tridiagonal matrix with 4 on the diagonal and 1 on the      off-diagonals.      The shift is a complex number.   2) Data structure used to represent matrices A and B:      {nnzA, irowA, pcolA, valA}: matrix A data in CSC format.      {nnzA, irowA, pcolA, valA}: matrix B data in CSC format.   3) Library called by this example:      The SuperLU package is called by ARluNonSymGenEig to solve      some complex linear systems involving (A-sigma*B). This is      needed to implement the shift and invert strategy.   4) Included header files:      File             Contents      -----------      -----------------------------------------      lnmatrxe.h       NonSymMatrixE, a function that generates                       matrix A in CSC format.      lnmatrxf.h       NonSymMatrixF, a function tha generates                       matrix B in CSC format.      arlnsmat.h       The ARluNonSymMatrix class definition.      arlgnsym.h       The ARluNonSymGenEig class definition.      lnsymsol.h       The Solution function.   5) ARPACK Authors:      Richard Lehoucq      Kristyn Maschhoff      Danny Sorensen      Chao Yang      Dept. of Computational & Applied Mathematics      Rice University      Houston, Texas*/#include "lnmatrxe.h"#include "lnmatrxf.h"#include "arlnsmat.h"#include "arlgnsym.h"#include "lnsymsol.h"main(){  // Defining variables;  int     n;               // Dimension of the problem.  int     nnza,   nnzb;    // Number of nonzero elements in A and B.  int     *irowa, *irowb;  // pointers to arrays that store the row                           // indices of the nonzeros in A and B.  int     *pcola, *pcolb;  // pointers to arrays of pointers to the                           // beginning of each column of A and B in                           // valA and valB.  double  *valA,  *valB;   // pointers to arrays that store the                           // nonzero elements of A and B.  // Creating matrices A and B.  n = 100;  NonSymMatrixE(n, nnza, valA, irowa, pcola);  ARluNonSymMatrix<double> A(n, nnza, valA, irowa, pcola);  NonSymMatrixF(n, nnzb, valB, irowb, pcolb);  ARluNonSymMatrix<double> B(n, nnzb, valB, irowb, pcolb);  // Defining what we need: the four eigenvectors nearest to 0.4 + 0.6i.  ARluNonSymGenEig<double> dprob(4L, A, B, 'R', 0.4, 0.6);  // Finding eigenvalues and eigenvectors.  dprob.FindEigenvectors();  // Printing solution.  Solution(A, B, dprob);} // main.

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -