📄 lsvd.cc
字号:
/* ARPACK++ v1.0 8/1/1997 c++ interface to ARPACK code. MODULE LSVD.cc. Example program that illustrates how to determine the condition number of a matrix using arpack++ to find its largest and smallest singular values. 1) Problem description: In this example, Arpack++ is called to solve the symmetric problem: (A'*A)*v = sigma*v where A is an m by n real matrix. This formulation is appropriate when m >= n. The roles of A and A' must be reversed in the case that m < n. 2) Data structure used to represent the matrix: {nnzA, irowA, pcolA, valA}: matrix A data in CSC format. 3) Included header files: File Contents ----------- -------------------------------------------- lnmatrxv.h RectangularMatrix, a function that generates matrix A in CSC format. arlnsmat.h The ARluNonSymMatrix class definition. arssym.h The ARSymStdEig class definition. 4) ARPACK Authors: Richard Lehoucq Kristyn Maschhoff Danny Sorensen Chao Yang Dept. of Computational & Applied Mathematics Rice University Houston, Texas*/#include "arssym.h"#include "lnmatrxv.h"#include "arlnsmat.h"#include <math.h>main(){ // Defining variables; int m; // Number of rows in A. int n; // Number of columns in A. int nnz; // Number of nonzero elements in A. int* irow; // pointer to an array that stores the row // indices of the nonzeros in A. int* pcol; // pointer to an array of pointers to the // beginning of each column of A in valA. double* valA; // pointer to an array that stores the // nonzero elements of A. double cond; // Condition number of A. double* svalue = new double[6]; // Creating a retangular matrix with m = 200 and n = 100. n = 100; RetangularMatrix(n, m, nnz, valA, irow, pcol); // Using ARluNonSymMatrix to store matrix information and to // perform the product A'Ax (LU decomposition is not used). ARluNonSymMatrix<double> A(m, n, nnz, valA, irow, pcol); // Defining what we need: eigenvalues from both ends of the spectrum. ARSymStdEig<double, ARluNonSymMatrix<double> > dprob(n, 6L, &A, &ARluNonSymMatrix<double>::MultMtMv, "BE", 20L); // Finding eigenvalues. dprob.Eigenvalues(svalue); // Calculating singular values. svalue[0] = sqrt(svalue[0]); svalue[5] = sqrt(svalue[5]); // Obtaining the condition number. cond = svalue[5]/svalue[0]; // Printing some information about the problem. cout << endl << "Testing ARPACK++ class ARSymStdEig" << endl; cout << "Obtaining singular values by solving (A'*A)*v = sigma*v" << endl; cout << " greatest singular value: " << svalue[5] << endl; cout << " smallest singular value: " << svalue[0] << endl; cout << " condition number of A : " << cond << endl; cout << "MATLAB solution:" << endl; cout << " greatest singular value: 9.89757224207690 \n"; cout << " smallest singular value: 1.41683937261247 \n"; cout << " condition number of A : 6.98566995906319 \n";} // main.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -