⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 lsvd2.cc

📁 ARPACK is a collection of Fortran77 subroutines designed to solve large scale eigenvalue problems.
💻 CC
字号:
/*   ARPACK++ v1.0 8/1/1997   c++ interface to ARPACK code.   MODULE LSVD.cc.   Example program that illustrates how to determine the truncated SVD   of a matrix using the ARSymStdEig class.   1) Problem description:      In this example, Arpack++ is called to solve the symmetric problem:                              | 0  A |*y = sigma*y,                              | A' 0 |      where A is an m by n real matrix.      This problem can be used to obtain the decomposition A = U*S*V'.      The positive eigenvalues of this problem are the singular values       of A (the eigenvalues come in pairs, the negative eigenvalues have      the same magnitude of the positive ones and can be discarded).       The columns of U can be extracted from the first m components of      the eigenvectors y, while the columns of V can be      extracted from the the remaining n components.   2) Data structure used to represent the matrix:      {nnzA, irowA, pcolA, valA}: matrix A data in CSC format.   3) Included header files:      File             Contents      -----------      --------------------------------------------      lnmatrxv.h       RectangularMatrix, a function that generates                       matrix A in CSC format.      arlnsmat.h       The ARluNonSymMatrix class definition.      arssym.h         The ARSymStdEig class definition.      lsvdsol.h        The Solution function definition.   4) ARPACK Authors:      Richard Lehoucq      Kristyn Maschhoff      Danny Sorensen      Chao Yang      Dept. of Computational & Applied Mathematics      Rice University      Houston, Texas*/#include "arssym.h"#include "lnmatrxv.h"#include "arlnsmat.h"#include "lsvdsol.h"main(){  // Defining variables;  int     m;          // Number of rows in A.  int     n;          // Number of columns in A.  int     nnz;        // Number of nonzero elements in A.  int*    irow;       // pointer to an array that stores the row                      // indices of the nonzeros in A.  int*    pcol;       // pointer to an array of pointers to the                      // beginning of each column of A in valA.  double* valA;       // pointer to an array that stores the                      // nonzero elements of A.  // Creating a retangular matrix with m = 200 and n = 100.  n = 100;  RetangularMatrix(n, m, nnz, valA, irow, pcol);  // Using ARluNonSymMatrix to store matrix information and to  // perform the product OP*x (no LU decomposition is performed).  ARluNonSymMatrix<double> A(m, n, nnz, valA, irow, pcol);  // Defining what we need: the four eigenvalues with largest  // algebraic value.  ARSymStdEig<double, ARluNonSymMatrix<double> >    dprob(m+n, 5L, &A, &ARluNonSymMatrix<double>::Mult0MMt0v, "LA", 20L);  // Finding eigenvalues.  dprob.FindEigenvectors();  // Printing the solution.  Solution(A, dprob);} // main.

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -