📄 lsvd2.cc
字号:
/* ARPACK++ v1.0 8/1/1997 c++ interface to ARPACK code. MODULE LSVD.cc. Example program that illustrates how to determine the truncated SVD of a matrix using the ARSymStdEig class. 1) Problem description: In this example, Arpack++ is called to solve the symmetric problem: | 0 A |*y = sigma*y, | A' 0 | where A is an m by n real matrix. This problem can be used to obtain the decomposition A = U*S*V'. The positive eigenvalues of this problem are the singular values of A (the eigenvalues come in pairs, the negative eigenvalues have the same magnitude of the positive ones and can be discarded). The columns of U can be extracted from the first m components of the eigenvectors y, while the columns of V can be extracted from the the remaining n components. 2) Data structure used to represent the matrix: {nnzA, irowA, pcolA, valA}: matrix A data in CSC format. 3) Included header files: File Contents ----------- -------------------------------------------- lnmatrxv.h RectangularMatrix, a function that generates matrix A in CSC format. arlnsmat.h The ARluNonSymMatrix class definition. arssym.h The ARSymStdEig class definition. lsvdsol.h The Solution function definition. 4) ARPACK Authors: Richard Lehoucq Kristyn Maschhoff Danny Sorensen Chao Yang Dept. of Computational & Applied Mathematics Rice University Houston, Texas*/#include "arssym.h"#include "lnmatrxv.h"#include "arlnsmat.h"#include "lsvdsol.h"main(){ // Defining variables; int m; // Number of rows in A. int n; // Number of columns in A. int nnz; // Number of nonzero elements in A. int* irow; // pointer to an array that stores the row // indices of the nonzeros in A. int* pcol; // pointer to an array of pointers to the // beginning of each column of A in valA. double* valA; // pointer to an array that stores the // nonzero elements of A. // Creating a retangular matrix with m = 200 and n = 100. n = 100; RetangularMatrix(n, m, nnz, valA, irow, pcol); // Using ARluNonSymMatrix to store matrix information and to // perform the product OP*x (no LU decomposition is performed). ARluNonSymMatrix<double> A(m, n, nnz, valA, irow, pcol); // Defining what we need: the four eigenvalues with largest // algebraic value. ARSymStdEig<double, ARluNonSymMatrix<double> > dprob(m+n, 5L, &A, &ARluNonSymMatrix<double>::Mult0MMt0v, "LA", 20L); // Finding eigenvalues. dprob.FindEigenvectors(); // Printing the solution. Solution(A, dprob);} // main.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -