📄 progs.htm
字号:
(<a href="examples/xgammln.cpp">example</a>)<li>[6.1]
<a href="recipes/factrl.cpp"><b>factrl</b></a> factorial function
(<a href="examples/xfactrl.cpp">example</a>)<li>[6.1]
<a href="recipes/bico.cpp"><b>bico</b></a> binomial coefficients function
(<a href="examples/xbico.cpp">example</a>)<li>[6.1]
<a href="recipes/factln.cpp"><b>factln</b></a> logarithm of factorial function
(<a href="examples/xfactln.cpp">example</a>)<li>[6.1]
<a href="recipes/beta.cpp"><b>beta</b></a> beta function
(<a href="examples/xbeta.cpp">example</a>)<li>[6.2]
<a href="recipes/gammp.cpp"><b>gammp</b></a> incomplete gamma function
(<a href="examples/xgammp.cpp">example</a>)<li>[6.2]
<a href="recipes/gammq.cpp"><b>gammq</b></a> complement of incomplete gamma function
(<a href="examples/xgammq.cpp">example</a>)<li>[6.2]
<a href="recipes/gser.cpp"><b>gser</b></a> series used by gammp and gammq
(<a href="examples/xgser.cpp">example</a>)<li>[6.2]
<a href="recipes/gcf.cpp"><b>gcf</b></a> continued fraction used by gammp and gammq
(<a href="examples/xgcf.cpp">example</a>)<li>[6.2]
<a href="recipes/erff.cpp"><b>erf</b></a> error function
<li>[6.2]
<a href="recipes/erffc.cpp"><b>erfc</b></a> complementary error function
<li>[6.2]
<a href="recipes/erfcc.cpp"><b>erfcc</b></a> complementary error function, concise routine
(<a href="examples/xerfcc.cpp">example</a>)<li>[6.3]
<a href="recipes/expint.cpp"><b>expint</b></a> exponential integral E_n
(<a href="examples/xexpint.cpp">example</a>)<li>[6.3]
<a href="recipes/ei.cpp"><b>ei</b></a> exponential integral Ei
(<a href="examples/xei.cpp">example</a>)<li>[6.4]
<a href="recipes/betai.cpp"><b>betai</b></a> incomplete beta function
(<a href="examples/xbetai.cpp">example</a>)<li>[6.4]
<a href="recipes/betacf.cpp"><b>betacf</b></a> continued fraction used by betai
<li>[6.5]
<a href="recipes/bessj0.cpp"><b>bessj0</b></a> Bessel function J_0
(<a href="examples/xbessj0.cpp">example</a>)<li>[6.5]
<a href="recipes/bessy0.cpp"><b>bessy0</b></a> Bessel function Y_0
(<a href="examples/xbessy0.cpp">example</a>)<li>[6.5]
<a href="recipes/bessj1.cpp"><b>bessj1</b></a> Bessel function J_1
(<a href="examples/xbessj1.cpp">example</a>)<li>[6.5]
<a href="recipes/bessy1.cpp"><b>bessy1</b></a> Bessel function Y_1
(<a href="examples/xbessy1.cpp">example</a>)<li>[6.5]
<a href="recipes/bessy.cpp"><b>bessy</b></a> Bessel function Y of general integer order
(<a href="examples/xbessy.cpp">example</a>)<li>[6.5]
<a href="recipes/bessj.cpp"><b>bessj</b></a> Bessel function J of general integer order
(<a href="examples/xbessj.cpp">example</a>)<li>[6.6]
<a href="recipes/bessi0.cpp"><b>bessi0</b></a> modified Bessel function I_0
(<a href="examples/xbessi0.cpp">example</a>)<li>[6.6]
<a href="recipes/bessk0.cpp"><b>bessk0</b></a> modified Bessel function K_0
(<a href="examples/xbessk0.cpp">example</a>)<li>[6.6]
<a href="recipes/bessi1.cpp"><b>bessi1</b></a> modified Bessel function I_1
(<a href="examples/xbessi1.cpp">example</a>)<li>[6.6]
<a href="recipes/bessk1.cpp"><b>bessk1</b></a> modified Bessel function K_1
(<a href="examples/xbessk1.cpp">example</a>)<li>[6.6]
<a href="recipes/bessk.cpp"><b>bessk</b></a> modified Bessel function K of integer order
(<a href="examples/xbessk.cpp">example</a>)<li>[6.6]
<a href="recipes/bessi.cpp"><b>bessi</b></a> modified Bessel function I of integer order
(<a href="examples/xbessi.cpp">example</a>)<li>[6.7]
<a href="recipes/bessjy.cpp"><b>bessjy</b></a> Bessel functions of fractional order
(<a href="examples/xbessjy.cpp">example</a>)<li>[6.7]
<a href="recipes/beschb.cpp"><b>beschb</b></a> Chebyshev expansion used by bessjy
(<a href="examples/xbeschb.cpp">example</a>)<li>[6.7]
<a href="recipes/bessik.cpp"><b>bessik</b></a> modified Bessel functions of fractional order
(<a href="examples/xbessik.cpp">example</a>)<li>[6.7]
<a href="recipes/airy.cpp"><b>airy </b></a> Airy functions
<li>[6.7]
<a href="recipes/sphbes.cpp"><b>sphbes</b></a> spherical Bessel functions j_n and y_n
(<a href="examples/xsphbes.cpp">example</a>)<li>[6.8]
<a href="recipes/plgndr.cpp"><b>plgndr</b></a> Legendre polynomials, associated (spherical harmonics)
(<a href="examples/xplgndr.cpp">example</a>)<li>[6.9]
<a href="recipes/frenel.cpp"><b>frenel</b></a> Fresnel integrals S(x) and C(x)
(<a href="examples/xfrenel.cpp">example</a>)<li>[6.9]
<a href="recipes/cisi.cpp"><b>cisi </b></a> cosine and sine integrals Ci and Si
<li>[6.10]
<a href="recipes/dawson.cpp"><b>dawson</b></a> Dawson's integral
(<a href="examples/xdawson.cpp">example</a>)<li>[6.11]
<a href="recipes/rf.cpp"><b>rf</b></a> Carlson's elliptic integral of the first kind
(<a href="examples/xrf.cpp">example</a>)<li>[6.11]
<a href="recipes/rd.cpp"><b>rd</b></a> Carlson's elliptic integral of the second kind
(<a href="examples/xrd.cpp">example</a>)<li>[6.11]
<a href="recipes/rj.cpp"><b>rj</b></a> Carlson's elliptic integral of the third kind
(<a href="examples/xrj.cpp">example</a>)<li>[6.11]
<a href="recipes/rc.cpp"><b>rc</b></a> Carlson's degenerate elliptic integral
(<a href="examples/xrc.cpp">example</a>)<li>[6.11]
<a href="recipes/ellf.cpp"><b>ellf</b></a> Legendre elliptic integral of the first kind
(<a href="examples/xellf.cpp">example</a>)<li>[6.11]
<a href="recipes/elle.cpp"><b>elle</b></a> Legendre elliptic integral of the second kind
(<a href="examples/xelle.cpp">example</a>)<li>[6.11]
<a href="recipes/ellpi.cpp"><b>ellpi</b></a> Legendre elliptic integral of the third kind
(<a href="examples/xellpi.cpp">example</a>)<li>[6.11]
<a href="recipes/sncndn.cpp"><b>sncndn</b></a> Jacobian elliptic functions
(<a href="examples/xsncndn.cpp">example</a>)<li>[6.12]
<a href="recipes/hypgeo.cpp"><b>hypgeo</b></a> complex hypergeometric function
(<a href="examples/xhypgeo.cpp">example</a>)<li>[6.12]
<a href="recipes/hypser.cpp"><b>hypser</b></a> complex hypergeometric function, series evaluation
<li>[6.12]
<a href="recipes/hypdrv.cpp"><b>hypdrv</b></a> complex hypergeometric function, derivative of
</menu>
<h3><a name="C7"></A><A HREF="toc.htm#C7">Chapter
7</a></h3>
<menu>
<li>[7.1]
<a href="recipes/ran0.cpp"><b>ran0</b></a> random deviate by Park and Miller minimal standard
<li>[7.1]
<a href="recipes/ran1.cpp"><b>ran1</b></a> random deviate, minimal standard plus shuffle
<li>[7.1]
<a href="recipes/ran2.cpp"><b>ran2</b></a> random deviate by L'Ecuyer long period plus shuffle
<li>[7.1]
<a href="recipes/ran3.cpp"><b>ran3</b></a> random deviate by Knuth subtractive method
<li>[7.2]
<a href="recipes/expdev.cpp"><b>expdev</b></a> exponential random deviates
(<a href="examples/xexpdev.cpp">example</a>)<li>[7.2]
<a href="recipes/gasdev.cpp"><b>gasdev</b></a> normally distributed random deviates
(<a href="examples/xgasdev.cpp">example</a>)<li>[7.3]
<a href="recipes/gamdev.cpp"><b>gamdev</b></a> gamma-law distribution random deviates
(<a href="examples/xgamdev.cpp">example</a>)<li>[7.3]
<a href="recipes/poidev.cpp"><b>poidev</b></a> Poisson distributed random deviates
(<a href="examples/xpoidev.cpp">example</a>)<li>[7.3]
<a href="recipes/bnldev.cpp"><b>bnldev</b></a> binomial distributed random deviates
(<a href="examples/xbnldev.cpp">example</a>)<li>[7.4]
<a href="recipes/irbit1.cpp"><b>irbit1</b></a> random bit sequence
(<a href="examples/xirbit1.cpp">example</a>)<li>[7.4]
<a href="recipes/irbit2.cpp"><b>irbit2</b></a> random bit sequence
(<a href="examples/xirbit2.cpp">example</a>)<li>[7.5]
<a href="recipes/psdes.cpp"><b>psdes</b></a> ``pseudo-DES'' hashing of 64 bits
(<a href="examples/xpsdes.cpp">example</a>)<li>[7.5]
<a href="recipes/ran4.cpp"><b>ran4</b></a> random deviates from DES-like hashing
(<a href="examples/xran4.cpp">example</a>)<li>[7.7]
<a href="recipes/sobseq.cpp"><b>sobseq</b></a> Sobol's quasi-random sequence
(<a href="examples/xsobseq.cpp">example</a>)<li>[7.8]
<a href="recipes/vegas.cpp"><b>vegas</b></a> adaptive multidimensional Monte Carlo integration
(<a href="examples/xvegas.cpp">example</a>)<li>[7.8]
<a href="recipes/rebin.cpp"><b>rebin</b></a> sample rebinning used by vegas
<li>[7.8]
<a href="recipes/miser.cpp"><b>miser</b></a> recursive multidimensional Monte Carlo integration
(<a href="examples/xmiser.cpp">example</a>)<li>[7.8]
<a href="recipes/ranpt.cpp"><b>ranpt</b></a> get random point, used by miser
</menu>
<h3><a name="C8"></A><A HREF="toc.htm#C8">Chapter
8</a></h3>
<menu>
<li>[8.1]
<a href="recipes/piksrt.cpp"><b>piksrt</b></a> sort an array by straight insertion
(<a href="examples/xpiksrt.cpp">example</a>)<li>[8.1]
<a href="recipes/piksr2.cpp"><b>piksr2</b></a> sort two arrays by straight insertion
(<a href="examples/xpiksr2.cpp">example</a>)<li>[8.1]
<a href="recipes/shell.cpp"><b>shell</b></a> sort an array by Shell's method
(<a href="examples/xshell.cpp">example</a>)<li>[8.2]
<a href="recipes/sort.cpp"><b>sort</b></a> sort an array by quicksort method
(<a href="examples/xsort.cpp">example</a>)<li>[8.2]
<a href="recipes/sort2.cpp"><b>sort2</b></a> sort two arrays by quicksort method
(<a href="examples/xsort2.cpp">example</a>)<li>[8.3]
<a href="recipes/hpsort.cpp"><b>hpsort</b></a> sort an array by heapsort method
(<a href="examples/xhpsort.cpp">example</a>)<li>[8.4]
<a href="recipes/indexx.cpp"><b>indexx</b></a> construct an index for an array
(<a href="examples/xindexx.cpp">example</a>)<li>[8.4]
<a href="recipes/sort3.cpp"><b>sort3</b></a> sort, use an index to sort 3 or more arrays
(<a href="examples/xsort3.cpp">example</a>)<li>[8.4]
<a href="recipes/rank.cpp"><b>rank</b></a> construct a rank table for an array
(<a href="examples/xrank.cpp">example</a>)<li>[8.5]
<a href="recipes/select.cpp"><b>select</b></a> find the Nth largest in an array
(<a href="examples/xselect.cpp">example</a>)<li>[8.5]
<a href="recipes/selip.cpp"><b>selip</b></a> find the Nth largest, without altering an array
(<a href="examples/xselip.cpp">example</a>)<li>[8.5]
<a href="recipes/hpsel.cpp"><b>hpsel</b></a> find M largest values, without altering an array
(<a href="examples/xhpsel.cpp">example</a>)<li>[8.6]
<a href="recipes/eclass.cpp"><b>eclass</b></a> determine equivalence classes from list
(<a href="examples/xeclass.cpp">example</a>)<li>[8.6]
<a href="recipes/eclazz.cpp"><b>eclazz</b></a> determine equivalence classes from procedure
(<a href="examples/xeclazz.cpp">example</a>)</menu>
<h3><a name="C9"></A><A HREF="toc.htm#C9">Chapter
9</a></h3>
<menu>
<li>[9.0]
<a href="recipes/scrsho.cpp"><b>scrsho</b></a> graph a function to search for roots
(<a href="examples/xscrsho.cpp">example</a>)<li>[9.1]
<a href="recipes/zbrac.cpp"><b>zbrac</b></a> outward search for brackets on roots
(<a href="examples/xzbrac.cpp">example</a>)<li>[9.1]
<a href="recipes/zbrak.cpp"><b>zbrak</b></a> inward search for brackets on roots
(<a href="examples/xzbrak.cpp">example</a>)<li>[9.1]
<a href="recipes/rtbis.cpp"><b>rtbis</b></a> find root of a function by bisection
(<a href="examples/xrtbis.cpp">example</a>)<li>[9.2]
<a href="recipes/rtflsp.cpp"><b>rtflsp</b></a> find root of a function by false-position
(<a href="examples/xrtflsp.cpp">example</a>)<li>[9.2]
<a href="recipes/rtsec.cpp"><b>rtsec</b></a> find root of a function by secant method
(<a href="examples/xrtsec.cpp">example</a>)<li>[9.2]
<a href="recipes/zriddr.cpp"><b>zriddr</b></a> find root of a function by Ridders' method
(<a href="examples/xzriddr.cpp">example</a>)<li>[9.3]
<a href="recipes/zbrent.cpp"><b>zbrent</b></a> find root of a function by Brent's method
(<a href="examples/xzbrent.cpp">example</a>)<li>[9.4]
<a href="recipes/rtnewt.cpp"><b>rtnewt</b></a> find root of a function by Newton-Raphson
(<a href="examples/xrtnewt.cpp">example</a>)<li>[9.4]
<a href="recipes/rtsafe.cpp"><b>rtsafe</b></a> find root of a function by Newton-Raphson and bisection
(<a href="examples/xrtsafe.cpp">example</a>)<li>[9.5]
<a href="recipes/laguer.cpp"><b>laguer</b></a> find a root of a polynomial by Laguerre's method
(<a href="examples/xlaguer.cpp">example</a>)<li>[9.5]
<a href="recipes/zroots.cpp"><b>zroots</b></a> roots of a polynomial by Laguerre's method with deflation
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -