⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bn_prime.c

📁 openssl是ssl的开源项目
💻 C
字号:
/* crypto/bn/bn_prime.c *//* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. *  * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to.  The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code.  The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). *  * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. *  * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright *    notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright *    notice, this list of conditions and the following disclaimer in the *    documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software *    must display the following acknowledgement: *    "This product includes cryptographic software written by *     Eric Young (eay@cryptsoft.com)" *    The word 'cryptographic' can be left out if the rouines from the library *    being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from  *    the apps directory (application code) you must include an acknowledgement: *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" *  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. *  * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed.  i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */#include <stdio.h>#include <time.h>#include "cryptlib.h"#include "bn_lcl.h"#include "rand.h"/* The quick seive algorithm approach to weeding out primes is * Philip Zimmermann's, as implemented in PGP.  I have had a read of * his comments and implemented my own version. */#include "bn_prime.h"#ifndef NOPROTOstatic int witness(BIGNUM *a, BIGNUM *n, BN_CTX *ctx,BN_CTX *ctx2,	BN_MONT_CTX *mont);static int probable_prime(BIGNUM *rnd, int bits);static int probable_prime_dh(BIGNUM *rnd, int bits,	BIGNUM *add, BIGNUM *rem, BN_CTX *ctx);static int probable_prime_dh_strong(BIGNUM *rnd, int bits,	BIGNUM *add, BIGNUM *rem, BN_CTX *ctx);#elsestatic int witness();static int probable_prime();static int probable_prime_dh();static int probable_prime_dh_strong();#endifBIGNUM *BN_generate_prime(ret,bits,strong,add,rem,callback,cb_arg)BIGNUM *ret;int bits;int strong;BIGNUM *add;BIGNUM *rem;void (*callback)(P_I_I_P); char *cb_arg;	{	BIGNUM *rnd=NULL;	BIGNUM t;	int i,j,c1=0;	BN_CTX *ctx;	ctx=BN_CTX_new();	if (ctx == NULL) goto err;	if (ret == NULL)		{		if ((rnd=BN_new()) == NULL) goto err;		}	else		rnd=ret;	BN_init(&t);loop: 	/* make a random number and set the top and bottom bits */	if (add == NULL)		{		if (!probable_prime(rnd,bits)) goto err;		}	else		{		if (strong)			{			if (!probable_prime_dh_strong(rnd,bits,add,rem,ctx))				 goto err;			}		else			{			if (!probable_prime_dh(rnd,bits,add,rem,ctx))				goto err;			}		}	/* if (BN_mod_word(rnd,(BN_ULONG)3) == 1) goto loop; */	if (callback != NULL) callback(0,c1++,cb_arg);	if (!strong)		{		i=BN_is_prime(rnd,BN_prime_checks,callback,ctx,cb_arg);		if (i == -1) goto err;		if (i == 0) goto loop;		}	else		{		/* for a strong prime generation,		 * check that (p-1)/2 is prime.		 * Since a prime is odd, We just		 * need to divide by 2 */		if (!BN_rshift1(&t,rnd)) goto err;		for (i=0; i<BN_prime_checks; i++)			{			j=BN_is_prime(rnd,1,callback,ctx,cb_arg);			if (j == -1) goto err;			if (j == 0) goto loop;			j=BN_is_prime(&t,1,callback,ctx,cb_arg);			if (j == -1) goto err;			if (j == 0) goto loop;			if (callback != NULL) callback(2,c1-1,cb_arg);			/* We have a strong prime test pass */			}		}	/* we have a prime :-) */	ret=rnd;err:	if ((ret == NULL) && (rnd != NULL)) BN_free(rnd);	BN_free(&t);	if (ctx != NULL) BN_CTX_free(ctx);	return(ret);	}int BN_is_prime(a,checks,callback,ctx_passed,cb_arg)BIGNUM *a;int checks;void (*callback)(P_I_I_P);BN_CTX *ctx_passed;char *cb_arg;	{	int i,j,c2=0,ret= -1;	BIGNUM *check;	BN_CTX *ctx=NULL,*ctx2=NULL;	BN_MONT_CTX *mont=NULL;	if (!BN_is_odd(a))		return(0);	if (ctx_passed != NULL)		ctx=ctx_passed;	else		if ((ctx=BN_CTX_new()) == NULL) goto err;	if ((ctx2=BN_CTX_new()) == NULL) goto err;	if ((mont=BN_MONT_CTX_new()) == NULL) goto err;	check= &(ctx->bn[ctx->tos++]);	/* Setup the montgomery structure */	if (!BN_MONT_CTX_set(mont,a,ctx2)) goto err;	for (i=0; i<checks; i++)		{		if (!BN_rand(check,BN_num_bits(a)-1,0,0)) goto err;		j=witness(check,a,ctx,ctx2,mont);		if (j == -1) goto err;		if (j)			{			ret=0;			goto err;			}		if (callback != NULL) callback(1,c2++,cb_arg);		}	ret=1;err:	ctx->tos--;	if ((ctx_passed == NULL) && (ctx != NULL))		BN_CTX_free(ctx);	if (ctx2 != NULL)		BN_CTX_free(ctx2);	if (mont != NULL) BN_MONT_CTX_free(mont);			return(ret);	}#define RECP_MUL_MODstatic int witness(a,n,ctx,ctx2,mont)BIGNUM *a;BIGNUM *n;BN_CTX *ctx,*ctx2;BN_MONT_CTX *mont;	{	int k,i,ret= -1,good;	BIGNUM *d,*dd,*tmp,*d1,*d2,*n1;	BIGNUM *mont_one,*mont_n1,*mont_a;	d1= &(ctx->bn[ctx->tos]);	d2= &(ctx->bn[ctx->tos+1]);	n1= &(ctx->bn[ctx->tos+2]);	ctx->tos+=3;	mont_one= &(ctx2->bn[ctx2->tos]);	mont_n1= &(ctx2->bn[ctx2->tos+1]);	mont_a= &(ctx2->bn[ctx2->tos+2]);	ctx2->tos+=3;	d=d1;	dd=d2;	if (!BN_one(d)) goto err;	if (!BN_sub(n1,n,d)) goto err; /* n1=n-1; */	k=BN_num_bits(n1);	if (!BN_to_montgomery(mont_one,BN_value_one(),mont,ctx2)) goto err;	if (!BN_to_montgomery(mont_n1,n1,mont,ctx2)) goto err;	if (!BN_to_montgomery(mont_a,a,mont,ctx2)) goto err;	BN_copy(d,mont_one);	for (i=k-1; i>=0; i--)		{		if (	(BN_cmp(d,mont_one) != 0) &&			(BN_cmp(d,mont_n1) != 0))			good=1;		else			good=0;		BN_mod_mul_montgomery(dd,d,d,mont,ctx2);				if (good && (BN_cmp(dd,mont_one) == 0))			{			ret=1;			goto err;			}		if (BN_is_bit_set(n1,i))			{			BN_mod_mul_montgomery(d,dd,mont_a,mont,ctx2);			}		else			{			tmp=d;			d=dd;			dd=tmp;			}		}	if (BN_cmp(d,mont_one) == 0)		i=0;	else	i=1;	ret=i;err:	ctx->tos-=3;	ctx2->tos-=3;	return(ret);	}static int probable_prime(rnd, bits)BIGNUM *rnd;int bits;	{	int i;	MS_STATIC BN_ULONG mods[NUMPRIMES];	BN_ULONG delta,d;again:	if (!BN_rand(rnd,bits,1,1)) return(0);	/* we now have a random number 'rand' to test. */	for (i=1; i<NUMPRIMES; i++)		mods[i]=BN_mod_word(rnd,(BN_ULONG)primes[i]);	delta=0;	loop: for (i=1; i<NUMPRIMES; i++)		{		/* check that rnd is not a prime and also		 * that gcd(rnd-1,primes) == 1 (except for 2) */		if (((mods[i]+delta)%primes[i]) <= 1)			{			d=delta;			delta+=2;			/* perhaps need to check for overflow of			 * delta (but delta can be upto 2^32)			 * 21-May-98 eay - added overflow check */			if (delta < d) goto again;			goto loop;			}		}	if (!BN_add_word(rnd,delta)) return(0);	return(1);	}static int probable_prime_dh(rnd, bits, add, rem,ctx)BIGNUM *rnd;int bits;BIGNUM *add;BIGNUM *rem;BN_CTX *ctx;	{	int i,ret=0;	BIGNUM *t1;	t1= &(ctx->bn[ctx->tos++]);	if (!BN_rand(rnd,bits,0,1)) goto err;	/* we need ((rnd-rem) % add) == 0 */	if (!BN_mod(t1,rnd,add,ctx)) goto err;	if (!BN_sub(rnd,rnd,t1)) goto err;	if (rem == NULL)		{ if (!BN_add_word(rnd,1)) goto err; }	else		{ if (!BN_add(rnd,rnd,rem)) goto err; }	/* we now have a random number 'rand' to test. */	loop: for (i=1; i<NUMPRIMES; i++)		{		/* check that rnd is a prime */		if (BN_mod_word(rnd,(BN_LONG)primes[i]) <= 1)			{			if (!BN_add(rnd,rnd,add)) goto err;			goto loop;			}		}	ret=1;err:	ctx->tos--;	return(ret);	}static int probable_prime_dh_strong(p, bits, padd, rem,ctx)BIGNUM *p;int bits;BIGNUM *padd;BIGNUM *rem;BN_CTX *ctx;	{	int i,ret=0;	BIGNUM *t1,*qadd=NULL,*q=NULL;	bits--;	t1= &(ctx->bn[ctx->tos++]);	q= &(ctx->bn[ctx->tos++]);	qadd= &(ctx->bn[ctx->tos++]);	if (!BN_rshift1(qadd,padd)) goto err;			if (!BN_rand(q,bits,0,1)) goto err;	/* we need ((rnd-rem) % add) == 0 */	if (!BN_mod(t1,q,qadd,ctx)) goto err;	if (!BN_sub(q,q,t1)) goto err;	if (rem == NULL)		{ if (!BN_add_word(q,1)) goto err; }	else		{		if (!BN_rshift1(t1,rem)) goto err;		if (!BN_add(q,q,t1)) goto err;		}	/* we now have a random number 'rand' to test. */	if (!BN_lshift1(p,q)) goto err;	if (!BN_add_word(p,1)) goto err;	loop: for (i=1; i<NUMPRIMES; i++)		{		/* check that p and q are prime */		/* check that for p and q		 * gcd(p-1,primes) == 1 (except for 2) */		if (	(BN_mod_word(p,(BN_LONG)primes[i]) == 0) ||			(BN_mod_word(q,(BN_LONG)primes[i]) == 0))			{			if (!BN_add(p,p,padd)) goto err;			if (!BN_add(q,q,qadd)) goto err;			goto loop;			}		}	ret=1;err:	ctx->tos-=3;	return(ret);	}#if 0static int witness(a, n,ctx)BIGNUM *a;BIGNUM *n;BN_CTX *ctx;	{	int k,i,nb,ret= -1;	BIGNUM *d,*dd,*tmp;	BIGNUM *d1,*d2,*x,*n1,*inv;	d1= &(ctx->bn[ctx->tos]);	d2= &(ctx->bn[ctx->tos+1]);	x=  &(ctx->bn[ctx->tos+2]);	n1= &(ctx->bn[ctx->tos+3]);	inv=&(ctx->bn[ctx->tos+4]);	ctx->tos+=5;	d=d1;	dd=d2;	if (!BN_one(d)) goto err;	if (!BN_sub(n1,n,d)) goto err; /* n1=n-1; */	k=BN_num_bits(n1);	/* i=BN_num_bits(n); */#ifdef RECP_MUL_MOD	nb=BN_reciprocal(inv,n,ctx); /**/	if (nb == -1) goto err;#endif	for (i=k-1; i>=0; i--)		{		if (BN_copy(x,d) == NULL) goto err;#ifndef RECP_MUL_MOD		if (!BN_mod_mul(dd,d,d,n,ctx)) goto err;#else		if (!BN_mod_mul_reciprocal(dd,d,d,n,inv,nb,ctx)) goto err;#endif		if (	BN_is_one(dd) &&			!BN_is_one(x) &&			(BN_cmp(x,n1) != 0))			{			ret=1;			goto err;			}		if (BN_is_bit_set(n1,i))			{#ifndef RECP_MUL_MOD			if (!BN_mod_mul(d,dd,a,n,ctx)) goto err;#else			if (!BN_mod_mul_reciprocal(d,dd,a,n,inv,nb,ctx)) goto err; #endif			}		else			{			tmp=d;			d=dd;			dd=tmp;			}		}	if (BN_is_one(d))		i=0;	else	i=1;	ret=i;err:	ctx->tos-=5;	return(ret);	}#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -