📄 bn_prime.c
字号:
/* crypto/bn/bn_prime.c *//* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */#include <stdio.h>#include <time.h>#include "cryptlib.h"#include "bn_lcl.h"#include "rand.h"/* The quick seive algorithm approach to weeding out primes is * Philip Zimmermann's, as implemented in PGP. I have had a read of * his comments and implemented my own version. */#include "bn_prime.h"#ifndef NOPROTOstatic int witness(BIGNUM *a, BIGNUM *n, BN_CTX *ctx,BN_CTX *ctx2, BN_MONT_CTX *mont);static int probable_prime(BIGNUM *rnd, int bits);static int probable_prime_dh(BIGNUM *rnd, int bits, BIGNUM *add, BIGNUM *rem, BN_CTX *ctx);static int probable_prime_dh_strong(BIGNUM *rnd, int bits, BIGNUM *add, BIGNUM *rem, BN_CTX *ctx);#elsestatic int witness();static int probable_prime();static int probable_prime_dh();static int probable_prime_dh_strong();#endifBIGNUM *BN_generate_prime(ret,bits,strong,add,rem,callback,cb_arg)BIGNUM *ret;int bits;int strong;BIGNUM *add;BIGNUM *rem;void (*callback)(P_I_I_P); char *cb_arg; { BIGNUM *rnd=NULL; BIGNUM t; int i,j,c1=0; BN_CTX *ctx; ctx=BN_CTX_new(); if (ctx == NULL) goto err; if (ret == NULL) { if ((rnd=BN_new()) == NULL) goto err; } else rnd=ret; BN_init(&t);loop: /* make a random number and set the top and bottom bits */ if (add == NULL) { if (!probable_prime(rnd,bits)) goto err; } else { if (strong) { if (!probable_prime_dh_strong(rnd,bits,add,rem,ctx)) goto err; } else { if (!probable_prime_dh(rnd,bits,add,rem,ctx)) goto err; } } /* if (BN_mod_word(rnd,(BN_ULONG)3) == 1) goto loop; */ if (callback != NULL) callback(0,c1++,cb_arg); if (!strong) { i=BN_is_prime(rnd,BN_prime_checks,callback,ctx,cb_arg); if (i == -1) goto err; if (i == 0) goto loop; } else { /* for a strong prime generation, * check that (p-1)/2 is prime. * Since a prime is odd, We just * need to divide by 2 */ if (!BN_rshift1(&t,rnd)) goto err; for (i=0; i<BN_prime_checks; i++) { j=BN_is_prime(rnd,1,callback,ctx,cb_arg); if (j == -1) goto err; if (j == 0) goto loop; j=BN_is_prime(&t,1,callback,ctx,cb_arg); if (j == -1) goto err; if (j == 0) goto loop; if (callback != NULL) callback(2,c1-1,cb_arg); /* We have a strong prime test pass */ } } /* we have a prime :-) */ ret=rnd;err: if ((ret == NULL) && (rnd != NULL)) BN_free(rnd); BN_free(&t); if (ctx != NULL) BN_CTX_free(ctx); return(ret); }int BN_is_prime(a,checks,callback,ctx_passed,cb_arg)BIGNUM *a;int checks;void (*callback)(P_I_I_P);BN_CTX *ctx_passed;char *cb_arg; { int i,j,c2=0,ret= -1; BIGNUM *check; BN_CTX *ctx=NULL,*ctx2=NULL; BN_MONT_CTX *mont=NULL; if (!BN_is_odd(a)) return(0); if (ctx_passed != NULL) ctx=ctx_passed; else if ((ctx=BN_CTX_new()) == NULL) goto err; if ((ctx2=BN_CTX_new()) == NULL) goto err; if ((mont=BN_MONT_CTX_new()) == NULL) goto err; check= &(ctx->bn[ctx->tos++]); /* Setup the montgomery structure */ if (!BN_MONT_CTX_set(mont,a,ctx2)) goto err; for (i=0; i<checks; i++) { if (!BN_rand(check,BN_num_bits(a)-1,0,0)) goto err; j=witness(check,a,ctx,ctx2,mont); if (j == -1) goto err; if (j) { ret=0; goto err; } if (callback != NULL) callback(1,c2++,cb_arg); } ret=1;err: ctx->tos--; if ((ctx_passed == NULL) && (ctx != NULL)) BN_CTX_free(ctx); if (ctx2 != NULL) BN_CTX_free(ctx2); if (mont != NULL) BN_MONT_CTX_free(mont); return(ret); }#define RECP_MUL_MODstatic int witness(a,n,ctx,ctx2,mont)BIGNUM *a;BIGNUM *n;BN_CTX *ctx,*ctx2;BN_MONT_CTX *mont; { int k,i,ret= -1,good; BIGNUM *d,*dd,*tmp,*d1,*d2,*n1; BIGNUM *mont_one,*mont_n1,*mont_a; d1= &(ctx->bn[ctx->tos]); d2= &(ctx->bn[ctx->tos+1]); n1= &(ctx->bn[ctx->tos+2]); ctx->tos+=3; mont_one= &(ctx2->bn[ctx2->tos]); mont_n1= &(ctx2->bn[ctx2->tos+1]); mont_a= &(ctx2->bn[ctx2->tos+2]); ctx2->tos+=3; d=d1; dd=d2; if (!BN_one(d)) goto err; if (!BN_sub(n1,n,d)) goto err; /* n1=n-1; */ k=BN_num_bits(n1); if (!BN_to_montgomery(mont_one,BN_value_one(),mont,ctx2)) goto err; if (!BN_to_montgomery(mont_n1,n1,mont,ctx2)) goto err; if (!BN_to_montgomery(mont_a,a,mont,ctx2)) goto err; BN_copy(d,mont_one); for (i=k-1; i>=0; i--) { if ( (BN_cmp(d,mont_one) != 0) && (BN_cmp(d,mont_n1) != 0)) good=1; else good=0; BN_mod_mul_montgomery(dd,d,d,mont,ctx2); if (good && (BN_cmp(dd,mont_one) == 0)) { ret=1; goto err; } if (BN_is_bit_set(n1,i)) { BN_mod_mul_montgomery(d,dd,mont_a,mont,ctx2); } else { tmp=d; d=dd; dd=tmp; } } if (BN_cmp(d,mont_one) == 0) i=0; else i=1; ret=i;err: ctx->tos-=3; ctx2->tos-=3; return(ret); }static int probable_prime(rnd, bits)BIGNUM *rnd;int bits; { int i; MS_STATIC BN_ULONG mods[NUMPRIMES]; BN_ULONG delta,d;again: if (!BN_rand(rnd,bits,1,1)) return(0); /* we now have a random number 'rand' to test. */ for (i=1; i<NUMPRIMES; i++) mods[i]=BN_mod_word(rnd,(BN_ULONG)primes[i]); delta=0; loop: for (i=1; i<NUMPRIMES; i++) { /* check that rnd is not a prime and also * that gcd(rnd-1,primes) == 1 (except for 2) */ if (((mods[i]+delta)%primes[i]) <= 1) { d=delta; delta+=2; /* perhaps need to check for overflow of * delta (but delta can be upto 2^32) * 21-May-98 eay - added overflow check */ if (delta < d) goto again; goto loop; } } if (!BN_add_word(rnd,delta)) return(0); return(1); }static int probable_prime_dh(rnd, bits, add, rem,ctx)BIGNUM *rnd;int bits;BIGNUM *add;BIGNUM *rem;BN_CTX *ctx; { int i,ret=0; BIGNUM *t1; t1= &(ctx->bn[ctx->tos++]); if (!BN_rand(rnd,bits,0,1)) goto err; /* we need ((rnd-rem) % add) == 0 */ if (!BN_mod(t1,rnd,add,ctx)) goto err; if (!BN_sub(rnd,rnd,t1)) goto err; if (rem == NULL) { if (!BN_add_word(rnd,1)) goto err; } else { if (!BN_add(rnd,rnd,rem)) goto err; } /* we now have a random number 'rand' to test. */ loop: for (i=1; i<NUMPRIMES; i++) { /* check that rnd is a prime */ if (BN_mod_word(rnd,(BN_LONG)primes[i]) <= 1) { if (!BN_add(rnd,rnd,add)) goto err; goto loop; } } ret=1;err: ctx->tos--; return(ret); }static int probable_prime_dh_strong(p, bits, padd, rem,ctx)BIGNUM *p;int bits;BIGNUM *padd;BIGNUM *rem;BN_CTX *ctx; { int i,ret=0; BIGNUM *t1,*qadd=NULL,*q=NULL; bits--; t1= &(ctx->bn[ctx->tos++]); q= &(ctx->bn[ctx->tos++]); qadd= &(ctx->bn[ctx->tos++]); if (!BN_rshift1(qadd,padd)) goto err; if (!BN_rand(q,bits,0,1)) goto err; /* we need ((rnd-rem) % add) == 0 */ if (!BN_mod(t1,q,qadd,ctx)) goto err; if (!BN_sub(q,q,t1)) goto err; if (rem == NULL) { if (!BN_add_word(q,1)) goto err; } else { if (!BN_rshift1(t1,rem)) goto err; if (!BN_add(q,q,t1)) goto err; } /* we now have a random number 'rand' to test. */ if (!BN_lshift1(p,q)) goto err; if (!BN_add_word(p,1)) goto err; loop: for (i=1; i<NUMPRIMES; i++) { /* check that p and q are prime */ /* check that for p and q * gcd(p-1,primes) == 1 (except for 2) */ if ( (BN_mod_word(p,(BN_LONG)primes[i]) == 0) || (BN_mod_word(q,(BN_LONG)primes[i]) == 0)) { if (!BN_add(p,p,padd)) goto err; if (!BN_add(q,q,qadd)) goto err; goto loop; } } ret=1;err: ctx->tos-=3; return(ret); }#if 0static int witness(a, n,ctx)BIGNUM *a;BIGNUM *n;BN_CTX *ctx; { int k,i,nb,ret= -1; BIGNUM *d,*dd,*tmp; BIGNUM *d1,*d2,*x,*n1,*inv; d1= &(ctx->bn[ctx->tos]); d2= &(ctx->bn[ctx->tos+1]); x= &(ctx->bn[ctx->tos+2]); n1= &(ctx->bn[ctx->tos+3]); inv=&(ctx->bn[ctx->tos+4]); ctx->tos+=5; d=d1; dd=d2; if (!BN_one(d)) goto err; if (!BN_sub(n1,n,d)) goto err; /* n1=n-1; */ k=BN_num_bits(n1); /* i=BN_num_bits(n); */#ifdef RECP_MUL_MOD nb=BN_reciprocal(inv,n,ctx); /**/ if (nb == -1) goto err;#endif for (i=k-1; i>=0; i--) { if (BN_copy(x,d) == NULL) goto err;#ifndef RECP_MUL_MOD if (!BN_mod_mul(dd,d,d,n,ctx)) goto err;#else if (!BN_mod_mul_reciprocal(dd,d,d,n,inv,nb,ctx)) goto err;#endif if ( BN_is_one(dd) && !BN_is_one(x) && (BN_cmp(x,n1) != 0)) { ret=1; goto err; } if (BN_is_bit_set(n1,i)) {#ifndef RECP_MUL_MOD if (!BN_mod_mul(d,dd,a,n,ctx)) goto err;#else if (!BN_mod_mul_reciprocal(d,dd,a,n,inv,nb,ctx)) goto err; #endif } else { tmp=d; d=dd; dd=tmp; } } if (BN_is_one(d)) i=0; else i=1; ret=i;err: ctx->tos-=5; return(ret); }#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -