📄 d_ma.m
字号:
%D_MA HOSA Demo: Linear Processes - Parametric (MA) model estimation
% Blind deconvolution.
echo off
% Demo of maest
% A. Swami Jan 15, 1995
% Copyright (c) 1991-2001 by United Signals & Systems, Inc.
% $Revision: 1.5 $
% RESTRICTED RIGHTS LEGEND
% Use, duplication, or disclosure by the Government is subject to
% restrictions as set forth in subparagraph (c) (1) (ii) of the
% Rights in Technical Data and Computer Software clause of DFARS
% 252.227-7013.
% Manufacturer: United Signals & Systems, Inc., P.O. Box 2374,
% Culver City, California 90231.
%
% This material may be reproduced by or for the U.S. Government pursuant
% to the copyright license under the clause at DFARS 252.227-7013.
clear, clc,
echo on
%
% MA parameter estimation methods
%
% MAEST estimates the MA parameters using an algorithm due to Giannakis-Mendel
% and a modification by Tugnait. The algorithm uses both autocorrelation
% and cumulants, and assumes that the additive noise is white.
%
% The test synthetic "x" is an MA(3) synthetic with true MA parameters,
% [1, 0.9, 0.385, -0.771]; input was i.i.d. exponential; white Gaussian
% noise was added to obtain an SNR of 20 dB.
%
%Hit any key to continue
pause
% MA estimates based on third-order cumulants:
load ma1
bvec = maest(y,3,3,128);
disp(bvec')
% MA estimates based on fourth-order cumulants:
bvec = maest(y,3,4,128);
disp(bvec')
% Hit any key to continue
pause
echo off
clc
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -