📄 rtree.h
字号:
RTREE_TEMPLATE
bool RTREE_QUAL::InsertRect(Rect* a_rect, const DATATYPE& a_id, Node** a_root, int a_level)
{
ASSERT(a_rect && a_root);
ASSERT(a_level >= 0 && a_level <= (*a_root)->m_level);
#ifdef _DEBUG
for(int index=0; index < NUMDIMS; ++index)
{
ASSERT(a_rect->m_min[index] <= a_rect->m_max[index]);
}
#endif //_DEBUG
Node* newRoot;
Node* newNode;
Branch branch;
if(InsertRectRec(a_rect, a_id, *a_root, &newNode, a_level)) // Root split
{
newRoot = AllocNode(); // Grow tree taller and new root
newRoot->m_level = (*a_root)->m_level + 1;
branch.m_rect = NodeCover(*a_root);
branch.m_child = *a_root;
AddBranch(&branch, newRoot, NULL);
branch.m_rect = NodeCover(newNode);
branch.m_child = newNode;
AddBranch(&branch, newRoot, NULL);
*a_root = newRoot;
return true;
}
return false;
}
// Find the smallest rectangle that includes all rectangles in branches of a node.
RTREE_TEMPLATE
typename RTREE_QUAL::Rect RTREE_QUAL::NodeCover(Node* a_node)
{
ASSERT(a_node);
int firstTime = true;
Rect rect;
InitRect(&rect);
for(int index = 0; index < a_node->m_count; ++index)
{
if(firstTime)
{
rect = a_node->m_branch[index].m_rect;
firstTime = false;
}
else
{
rect = CombineRect(&rect, &(a_node->m_branch[index].m_rect));
}
}
return rect;
}
// Add a branch to a node. Split the node if necessary.
// Returns 0 if node not split. Old node updated.
// Returns 1 if node split, sets *new_node to address of new node.
// Old node updated, becomes one of two.
RTREE_TEMPLATE
bool RTREE_QUAL::AddBranch(Branch* a_branch, Node* a_node, Node** a_newNode)
{
ASSERT(a_branch);
ASSERT(a_node);
if(a_node->m_count < MAXNODES) // Split won't be necessary
{
a_node->m_branch[a_node->m_count] = *a_branch;
++a_node->m_count;
return false;
}
else
{
ASSERT(a_newNode);
SplitNode(a_node, a_branch, a_newNode);
return true;
}
}
// Disconnect a dependent node.
// Caller must return (or stop using iteration index) after this as count has changed
RTREE_TEMPLATE
void RTREE_QUAL::DisconnectBranch(Node* a_node, int a_index)
{
ASSERT(a_node && (a_index >= 0) && (a_index < MAXNODES));
ASSERT(a_node->m_count > 0);
// Remove element by swapping with the last element to prevent gaps in array
a_node->m_branch[a_index] = a_node->m_branch[a_node->m_count - 1];
--a_node->m_count;
}
// Pick a branch. Pick the one that will need the smallest increase
// in area to accomodate the new rectangle. This will result in the
// least total area for the covering rectangles in the current node.
// In case of a tie, pick the one which was smaller before, to get
// the best resolution when searching.
RTREE_TEMPLATE
int RTREE_QUAL::PickBranch(Rect* a_rect, Node* a_node)
{
ASSERT(a_rect && a_node);
bool firstTime = true;
ELEMTYPEREAL increase;
ELEMTYPEREAL bestIncr = (ELEMTYPEREAL)-1;
ELEMTYPEREAL area;
ELEMTYPEREAL bestArea;
int best;
Rect tempRect;
for(int index=0; index < a_node->m_count; ++index)
{
Rect* curRect = &a_node->m_branch[index].m_rect;
area = CalcRectVolume(curRect);
tempRect = CombineRect(a_rect, curRect);
increase = CalcRectVolume(&tempRect) - area;
if((increase < bestIncr) || firstTime)
{
best = index;
bestArea = area;
bestIncr = increase;
firstTime = false;
}
else if((increase == bestIncr) && (area < bestArea))
{
best = index;
bestArea = area;
bestIncr = increase;
}
}
return best;
}
// Combine two rectangles into larger one containing both
RTREE_TEMPLATE
typename RTREE_QUAL::Rect RTREE_QUAL::CombineRect(Rect* a_rectA, Rect* a_rectB)
{
ASSERT(a_rectA && a_rectB);
Rect newRect;
for(int index = 0; index < NUMDIMS; ++index)
{
newRect.m_min[index] = Min(a_rectA->m_min[index], a_rectB->m_min[index]);
newRect.m_max[index] = Max(a_rectA->m_max[index], a_rectB->m_max[index]);
}
return newRect;
}
// Split a node.
// Divides the nodes branches and the extra one between two nodes.
// Old node is one of the new ones, and one really new one is created.
// Tries more than one method for choosing a partition, uses best result.
RTREE_TEMPLATE
void RTREE_QUAL::SplitNode(Node* a_node, Branch* a_branch, Node** a_newNode)
{
ASSERT(a_node);
ASSERT(a_branch);
// Could just use local here, but member or external is faster since it is reused
PartitionVars localVars;
PartitionVars* parVars = &localVars;
int level;
// Load all the branches into a buffer, initialize old node
level = a_node->m_level;
GetBranches(a_node, a_branch, parVars);
// Find partition
ChoosePartition(parVars, MINNODES);
// Put branches from buffer into 2 nodes according to chosen partition
*a_newNode = AllocNode();
(*a_newNode)->m_level = a_node->m_level = level;
LoadNodes(a_node, *a_newNode, parVars);
ASSERT((a_node->m_count + (*a_newNode)->m_count) == parVars->m_total);
}
// Calculate the n-dimensional volume of a rectangle
RTREE_TEMPLATE
ELEMTYPEREAL RTREE_QUAL::RectVolume(Rect* a_rect)
{
ASSERT(a_rect);
ELEMTYPEREAL volume = (ELEMTYPEREAL)1;
for(int index=0; index<NUMDIMS; ++index)
{
volume *= a_rect->m_max[index] - a_rect->m_min[index];
}
ASSERT(volume >= (ELEMTYPEREAL)0);
return volume;
}
// The exact volume of the bounding sphere for the given Rect
RTREE_TEMPLATE
ELEMTYPEREAL RTREE_QUAL::RectSphericalVolume(Rect* a_rect)
{
ASSERT(a_rect);
ELEMTYPEREAL sumOfSquares = (ELEMTYPEREAL)0;
ELEMTYPEREAL radius;
for(int index=0; index < NUMDIMS; ++index)
{
ELEMTYPEREAL halfExtent = ((ELEMTYPEREAL)a_rect->m_max[index] - (ELEMTYPEREAL)a_rect->m_min[index]) * 0.5f;
sumOfSquares += halfExtent * halfExtent;
}
radius = (ELEMTYPEREAL)sqrt(sumOfSquares);
// Pow maybe slow, so test for common dims like 2,3 and just use x*x, x*x*x.
if(NUMDIMS == 3)
{
return (radius * radius * radius * m_unitSphereVolume);
}
else if(NUMDIMS == 2)
{
return (radius * radius * m_unitSphereVolume);
}
else
{
return (ELEMTYPEREAL)(pow(radius, NUMDIMS) * m_unitSphereVolume);
}
}
// Use one of the methods to calculate retangle volume
RTREE_TEMPLATE
ELEMTYPEREAL RTREE_QUAL::CalcRectVolume(Rect* a_rect)
{
#ifdef RTREE_USE_SPHERICAL_VOLUME
return RectSphericalVolume(a_rect); // Slower but helps certain merge cases
#else // RTREE_USE_SPHERICAL_VOLUME
return RectVolume(a_rect); // Faster but can cause poor merges
#endif // RTREE_USE_SPHERICAL_VOLUME
}
// Load branch buffer with branches from full node plus the extra branch.
RTREE_TEMPLATE
void RTREE_QUAL::GetBranches(Node* a_node, Branch* a_branch, PartitionVars* a_parVars)
{
ASSERT(a_node);
ASSERT(a_branch);
ASSERT(a_node->m_count == MAXNODES);
// Load the branch buffer
for(int index=0; index < MAXNODES; ++index)
{
a_parVars->m_branchBuf[index] = a_node->m_branch[index];
}
a_parVars->m_branchBuf[MAXNODES] = *a_branch;
a_parVars->m_branchCount = MAXNODES + 1;
// Calculate rect containing all in the set
a_parVars->m_coverSplit = a_parVars->m_branchBuf[0].m_rect;
for(index=1; index < MAXNODES+1; ++index)
{
a_parVars->m_coverSplit = CombineRect(&a_parVars->m_coverSplit, &a_parVars->m_branchBuf[index].m_rect);
}
a_parVars->m_coverSplitArea = CalcRectVolume(&a_parVars->m_coverSplit);
InitNode(a_node);
}
// Method #0 for choosing a partition:
// As the seeds for the two groups, pick the two rects that would waste the
// most area if covered by a single rectangle, i.e. evidently the worst pair
// to have in the same group.
// Of the remaining, one at a time is chosen to be put in one of the two groups.
// The one chosen is the one with the greatest difference in area expansion
// depending on which group - the rect most strongly attracted to one group
// and repelled from the other.
// If one group gets too full (more would force other group to violate min
// fill requirement) then other group gets the rest.
// These last are the ones that can go in either group most easily.
RTREE_TEMPLATE
void RTREE_QUAL::ChoosePartition(PartitionVars* a_parVars, int a_minFill)
{
ASSERT(a_parVars);
ELEMTYPEREAL biggestDiff;
int group, chosen, betterGroup;
InitParVars(a_parVars, a_parVars->m_branchCount, a_minFill);
PickSeeds(a_parVars);
while (((a_parVars->m_count[0] + a_parVars->m_count[1]) < a_parVars->m_total)
&& (a_parVars->m_count[0] < (a_parVars->m_total - a_parVars->m_minFill))
&& (a_parVars->m_count[1] < (a_parVars->m_total - a_parVars->m_minFill)))
{
biggestDiff = (ELEMTYPEREAL) -1;
for(int index=0; index<a_parVars->m_total; ++index)
{
if(!a_parVars->m_taken[index])
{
Rect* curRect = &a_parVars->m_branchBuf[index].m_rect;
Rect rect0 = CombineRect(curRect, &a_parVars->m_cover[0]);
Rect rect1 = CombineRect(curRect, &a_parVars->m_cover[1]);
ELEMTYPEREAL growth0 = CalcRectVolume(&rect0) - a_parVars->m_area[0];
ELEMTYPEREAL growth1 = CalcRectVolume(&rect1) - a_parVars->m_area[1];
ELEMTYPEREAL diff = growth1 - growth0;
if(diff >= 0)
{
group = 0;
}
else
{
group = 1;
diff = -diff;
}
if(diff > biggestDiff)
{
biggestDiff = diff;
chosen = index;
betterGroup = group;
}
else if((diff == biggestDiff) && (a_parVars->m_count[group] < a_parVars->m_count[betterGroup]))
{
chosen = index;
betterGroup = group;
}
}
}
Classify(chosen, betterGroup, a_parVars);
}
// If one group too full, put remaining rects in the other
if((a_parVars->m_count[0] + a_parVars->m_count[1]) < a_parVars->m_total)
{
if(a_parVars->m_count[0] >= a_parVars->m_total - a_parVars->m_minFill)
{
group = 1;
}
else
{
group = 0;
}
for(int index=0; index<a_parVars->m_total; ++index)
{
if(!a_parVars->m_taken[index])
{
Classify(index, group, a_parVars);
}
}
}
ASSERT((a_parVars->m_count[0] + a_parVars->m_count[1]) == a_parVars->m_total);
ASSERT((a_parVars->m_count[0] >= a_parVars->m_minFill) &&
(a_parVars->m_count[1] >= a_parVars->m_minFill));
}
// Copy branches from the buffer into two nodes according to the partition.
RTREE_TEMPLATE
void RTREE_QUAL::LoadNodes(Node* a_nodeA, Node* a_nodeB, PartitionVars* a_parVars)
{
ASSERT(a_nodeA);
ASSERT(a_nodeB);
ASSERT(a_parVars);
for(int index=0; index < a_parVars->m_total; ++index)
{
ASSERT(a_parVars->m_partition[index] == 0 || a_parVars->m_partition[index] == 1);
if(a_parVars->m_partition[index] == 0)
{
AddBranch(&a_parVars->m_branchBuf[index], a_nodeA, NULL);
}
else if(a_parVars->m_partition[index] == 1)
{
AddBranch(&a_parVars->m_branchBuf[index], a_nodeB, NULL);
}
}
}
// Initialize a PartitionVars structure.
RTREE_TEMPLATE
void RTREE_QUAL::InitParVars(PartitionVars* a_parVars, int a_maxRects, int a_minFill)
{
ASSERT(a_parVars);
a_parVars->m_count[0] = a_parVars->m_count[1] = 0;
a_parVars->m_area[0] = a_parVars->m_area[1] = (ELEMTYPEREAL)0;
a_parVars->m_total = a_maxRects;
a_parVars->m_minFill = a_minFill;
for(int index=0; index < a_maxRects; ++index)
{
a_parVars->m_taken[index] = false;
a_parVars->m_partition[index] = -1;
}
}
RTREE_TEMPLATE
void RTREE_QUAL::PickSeeds(PartitionVars* a_parVars)
{
int seed0, seed1;
ELEMTYPEREAL worst, waste;
ELEMTYPEREAL area[MAXNODES+1];
for(int index=0; index<a_parVars->m_total; ++index)
{
area[index] = CalcRectVolume(&a_parVars->m_branchBuf[index].m_rect);
}
worst = -a_parVars->m_coverSplitArea - 1;
for(int indexA=0; indexA < a_parVars->m_total-1; ++indexA)
{
for(int indexB = indexA+1; indexB < a_parVars->m_total; ++indexB)
{
Rect oneRect = CombineRect(&a_parVars->m_branchBuf[indexA].m_rect, &a_parVars->m_branchBuf[indexB].m_rect);
waste = CalcRectVolume(&oneRect) - area[indexA] - area[indexB];
if(waste > worst)
{
worst = waste;
seed0 = indexA;
seed1 = indexB;
}
}
}
Classify(seed0, 0, a_parVars);
Classify(seed1, 1, a_parVars);
}
// Put a branch in one of the groups.
RTREE_TEMPLATE
void RTREE_QUAL::Classify(int a_index, int a_group, PartitionVars* a_parVars)
{
ASSERT(a_parVars);
ASSERT(!a_parVars->m_taken[a_index]);
a_parVars->m_partition[a_index] = a_group;
a_parVars->m_taken[a_index] = true;
if (a_parVars->m_count[a_group] == 0)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -