⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 kalman00.m

📁 kalman的经典介绍文章
💻 M
字号:
%Kalman filter example demo in Python

% A Python implementation of the example given in pages 11-15 of "An
%Introduction to the Kalman Filter" by Greg Welch and Gary Bishop,
% University of North Carolina at Chapel Hill, Department of Computer
% Science, TR 95-041,
% http://www.cs.unc.edu/~welch/kalman/kalmanIntro.html

% by Andrew D. Straw

import numpy
import pylab

% intial parameters
n_iter = 50
sz =[n_iter,1] % size of array
x = -0.37727  % truth value (typo in example at top of p. 13 calls this z)
z = numpy.random.normal(x,0.1,size=sz) % observations (normal about x, sigma=0.1)

Q = 1e-5  % process variance

%allocate space for arrays
xhat=numpy.zeros(sz)      % a posteri estimate of x
P=numpy.zeros(sz)         % a posteri error estimate
xhatminus=numpy.zeros(sz) % a priori estimate of x
Pminus=numpy.zeros(sz)    % a priori error estimate
K=numpy.zeros(sz)         % gain or blending factor

R = 0.1**2 % estimate of measurement variance, change to see effect

% intial guesses
xhat[0] = 0.0
P[0] = 1.0

for k in range(1,n_iter):
    % time update
    xhatminus[k] = xhat[k-1]
    Pminus[k] = P[k-1]+Q

    % measurement update
    K[k] = Pminus[k]/( Pminus[k]+R )
    xhat[k] = xhatminus[k]+K[k]*(z[k]-xhatminus[k])
    P[k] = (1-K[k])*Pminus[k]

pylab.figure()
pylab.plot(z,'k+',label='noisy measurements')
pylab.plot(xhat,'b-',label='a posteri estimate')
pylab.axhline(x,color='g',label='truth value')
pylab.legend()
pylab.xlabel('Iteration')
pylab.ylabel('Voltage')

pylab.figure()
valid_iter = range(1,n_iter) % Pminus not valid at step 0
pylab.plot(valid_iter,Pminus[valid_iter],label='a priori error estimate')
pylab.xlabel('Iteration')
pylab.ylabel('$(Voltage)^2$')
pylab.setp(pylab.gca(),'ylim',[0,.01])
pylab.show()

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -