⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 pca算法程序 - dinga's blog.htm

📁 PCA算法程序 - Dinga s Blog主分量分析方法
💻 HTM
📖 第 1 页 / 共 3 页
字号:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3c.org/TR/1999/REC-html401-19991224/loose.dtd">
<!-- saved from url=(0038)http://www.dinga.cn/article.asp?id=250 -->
<HTML lang=UTF-8 xmlns="http://www.w3.org/1999/xhtml"><HEAD><TITLE>PCA算法程序 - Dinga's Blog</TITLE>
<META http-equiv=Content-Type content="text/html; charset=UTF-8">
<META http-equiv=Content-Language content=UTF-8>
<META content=all name=robots>
<META content=dinga@ewyu.com,dinga name=author>
<META content="Dinga's Blog CopyRight 2004-008" name=Copyright>
<META 
content="Dinga,blog,LabVIEW,ICA,Matlab,wavelet,Modal,Modal Analysis,Modal Parameter,signal processing,独立分量,独立分量分析,小波,小波分析,小波神经网,模态,模态分析,模态参数识别,信号处理" 
name=keywords>
<META content="Dinga's Blog - -Happy study-Enjoy life-Everyday is a New day!" 
name=description><LINK title="订阅 Dinga's Blog - ICA 所有文章(rss2)" 
href="http://www.dinga.cn/feed.asp?cateID=21" type=application/rss+xml 
rel=alternate><LINK title="订阅 Dinga's Blog - ICA 所有文章(atom)" 
href="http://www.dinga.cn/atom.asp?cateID=21" type=application/atom+xml 
rel=alternate><LINK rev=stylesheet media=all 
href="PCA算法程序 - Dinga's Blog.files/global.css" type=text/css rel=stylesheet><!--全局样式表--><LINK rev=stylesheet media=all 
href="PCA算法程序 - Dinga's Blog.files/layout.css" type=text/css rel=stylesheet><!--层次样式表--><LINK rev=stylesheet media=all 
href="PCA算法程序 - Dinga's Blog.files/typography.css" type=text/css rel=stylesheet><!--局部样式表--><LINK rev=stylesheet media=all 
href="PCA算法程序 - Dinga's Blog.files/link.css" type=text/css rel=stylesheet><!--超链接样式表--><LINK rev=stylesheet media=all 
href="PCA算法程序 - Dinga's Blog.files/editor.css" type=text/css rel=stylesheet><!--UBB编辑器代码--><LINK href="favicon.ico" type=image/x-icon 
rel=icon><LINK href="favicon.ico" type=image/x-icon rel="shortcut icon">
<SCRIPT src="PCA算法程序 - Dinga's Blog.files/common.js" 
type=text/javascript></SCRIPT>
<!--<script type="text/javascript" src="common/nicetitle.js"></script>-->
<META content="MSHTML 6.00.2900.3268" name=GENERATOR></HEAD>
<BODY onkeydown=PressKey() onload=initJS()><A accessKey=i 
href="http://www.dinga.cn/default.asp"></A><A accessKey=z 
href="javascript:history.go(-1)"></A>
<DIV id=container><!--顶部-->
<DIV id=header><!--广告开始  <div style="float:right;width:480px;padding:0;margin:10px 0 0 0; border:0;">  <script type="text/JavaScript">var alimama_pid="mm_10286735_347515_527001";var alimama_titlecolor="37499C";var alimama_descolor ="5892CB";var alimama_bgcolor="EDF9F7";var alimama_bordercolor="D6E9FC";var alimama_linkcolor="5768AC";var alimama_bottomcolor="FFFFFF";var alimama_anglesize="4";var alimama_bgpic="0";var alimama_icon="1";var alimama_sizecode="12";var alimama_width=468;var alimama_height=60;var alimama_type=2;</script><script src="http://p.alimama.com/inf.js" type="text/javascript"></script>  </div> 广告结束-->
<DIV id=blogname>Dinga's Blog 
<DIV id=blogTitle>-Happy study-Enjoy life-Everyday is a New day!</DIV></DIV>
<DIV id=menu>
<DIV id=Left></DIV>
<DIV id=Right></DIV>
<UL>
  <LI class=menuL></LI>
  <LI><A class=menuA title=日志首页 
  href="http://www.dinga.cn/default.asp">Index</A></LI>
  <LI class=menuDiv></LI>
  <LI><A class=menuA title=标签云集 href="http://www.dinga.cn/tag.asp">Tags</A></LI>
  <LI class=menuDiv></LI>
  <LI><A class=menuA title=GuestBook 
  href="http://www.dinga.cn/LoadMod.asp?plugins=GuestBookForPJBlog">GuestBook</A></LI>
  <LI class=menuDiv></LI>
  <LI><A class=menuA title=资源下载 
  href="http://www.dinga.cn/LoadMod.asp?plugins=Devildown">Resource</A></LI>
  <LI class=menuDiv></LI>
  <LI><A class=menuA title=友情链接 
  href="http://www.dinga.cn/bloglink.asp">Links</A></LI>
  <LI class=menuDiv></LI>
  <LI><A class=menuA title="" 
  href="http://www.dinga.cn/rili.htm">Calendar</A></LI>
  <LI class=menuR></LI></UL></DIV></DIV><!--内容-->
<DIV id=Tbody>
<DIV id=mainContent>
<DIV id=innermainContent>
<DIV id=mainContent-topimg></DIV>
<DIV class=content-width id=Content_ContentList><A accessKey=B 
href="http://www.dinga.cn/article.asp?id=250#body" name=body></A>
<DIV class=pageContent>
<DIV style="FLOAT: right; WIDTH: auto"><A title=订阅所有ICA的日志 accessKey=O 
href="http://www.dinga.cn/feed.asp?cateID=21" target=_blank><IMG 
style="MARGIN-BOTTOM: -1px" alt=订阅所有ICA的日志 
src="PCA算法程序 - Dinga's Blog.files/rss.png" border=0> 订阅</A> | <A 
title="上一篇日志: 主分量分析(PCA)的一些小事" accessKey=, 
href="http://www.dinga.cn/article.asp?id=249"><IMG alt="" 
src="PCA算法程序 - Dinga's Blog.files/Cprevious.gif" border=0> 上一篇</A> | <A 
title="下一篇日志: 来信太多" accessKey=. 
href="http://www.dinga.cn/article.asp?id=251"><IMG alt="" 
src="PCA算法程序 - Dinga's Blog.files/Cnext.gif" border=0> 下一篇</A> </DIV><IMG 
style="MARGIN: 0px 2px -4px 0px" alt="" 
src="PCA算法程序 - Dinga's Blog.files/20.gif"> <STRONG><A title=查看所有ICA的日志 
href="http://www.dinga.cn/default.asp?cateID=21">ICA</A></STRONG> </DIV>
<DIV class=Content>
<DIV class=Content-top>
<DIV class=ContentLeft></DIV>
<DIV class=ContentRight></DIV>
<H1 class=ContentTitle><STRONG>PCA算法程序</STRONG></H1>
<H2 class=ContentAuthor>作者:dinga 日期:2007-04-17</H2></DIV>
<DIV class=Content-Info>
<DIV class=InfoOther>字体大小: <A accessKey=1 
href="javascript:SetFont('12px')">小</A> <A accessKey=2 
href="javascript:SetFont('14px')">中</A> <A accessKey=3 
href="javascript:SetFont('16px')">大</A></DIV>
<DIV class=InfoAuthor><IMG style="MARGIN: 0px 2px -6px 0px" alt="" 
src="PCA算法程序 - Dinga's Blog.files/hn2_sunny.gif"><IMG alt="" 
src="PCA算法程序 - Dinga's Blog.files/hn2_t_sunny.gif"> <IMG 
style="MARGIN: 0px 2px -1px 0px" alt="" 
src="PCA算法程序 - Dinga's Blog.files/level4.gif"> </DIV></DIV>
<DIV class=Content-body 
id=logPanel>程序说明:y&nbsp;=&nbsp;pca(mixedsig),程序中mixedsig为&nbsp;n*T&nbsp;阶混合数据矩阵,n为信号个数,T为采样点数,&nbsp;y为&nbsp;m*T&nbsp;阶主分量矩阵。<BR><BR><SPAN 
style="COLOR: red">程序设计步骤</SPAN>:<BR>1、去均值<BR>2、计算协方差矩阵及其特征值和特征向量<BR>3、计算协方差矩阵的特征值大于阈值的个数<BR>4、降序排列特征值<BR>5、去掉较小的特征值<BR>6、去掉较大的特征值(<SPAN 
style="COLOR: blue">一般没有这一步</SPAN>)<BR>7、合并选择的特征值<BR>8、选择相应的特征值和特征向量<BR>9、计算白化矩阵<BR>10、提取主分量<BR><BR>
<DIV class=UBBPanel>
<DIV class=UBBTitle><IMG style="MARGIN: 0px 2px -3px 0px" alt=程序代码 
src="PCA算法程序 - Dinga's Blog.files/code.gif"> 程序代码</DIV>
<DIV 
class=UBBContent><BR>%程序说明:y&nbsp;=&nbsp;pca(mixedsig),程序中mixedsig为&nbsp;n*T&nbsp;阶混合数据矩阵,n为信号个数,T为采样点数<BR>%&nbsp;y为&nbsp;m*T&nbsp;阶主分量矩阵。<BR><BR>function&nbsp;y&nbsp;=&nbsp;pca(mixedsig)<BR>if&nbsp;nargin&nbsp;==&nbsp;0<BR>&nbsp;&nbsp;&nbsp;&nbsp;error('You&nbsp;must&nbsp;supply&nbsp;the&nbsp;mixed&nbsp;data&nbsp;as&nbsp;input&nbsp;argument.');<BR>end<BR>if&nbsp;length(size(mixedsig))&gt;2<BR>&nbsp;&nbsp;&nbsp;&nbsp;error('Input&nbsp;data&nbsp;can&nbsp;not&nbsp;have&nbsp;more&nbsp;than&nbsp;two&nbsp;dimensions.&nbsp;');<BR>end<BR>if&nbsp;any(any(isnan(mixedsig)))<BR>&nbsp;&nbsp;&nbsp;&nbsp;error('Input&nbsp;data&nbsp;contains&nbsp;NaN''s.');<BR>end<BR><BR>%——————————————去均值————————————<BR>meanValue&nbsp;=&nbsp;mean(mixedsig')';<BR>mixedsig&nbsp;=&nbsp;mixedsig&nbsp;-&nbsp;meanValue&nbsp;*&nbsp;ones(1,size(meanValue,2));<BR>[Dim,NumofSampl]&nbsp;=&nbsp;size(mixedsig);<BR>oldDimension&nbsp;=&nbsp;Dim;<BR>fprintf('Number&nbsp;of&nbsp;signals:&nbsp;%d\n',Dim);<BR>fprintf('Number&nbsp;of&nbsp;samples:&nbsp;%d\n',NumofSampl);<BR>fprintf('Calculate&nbsp;PCA...');<BR>firstEig&nbsp;=&nbsp;1;<BR>lastEig&nbsp;=&nbsp;Dim;<BR>covarianceMatrix&nbsp;=&nbsp;cov(mixedsig',1);&nbsp;&nbsp;&nbsp;&nbsp;%计算协方差矩阵<BR>[E,D]&nbsp;=&nbsp;eig(covarianceMatrix);&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;%计算协方差矩阵的特征值和特征向量<BR><BR>%———计算协方差矩阵的特征值大于阈值的个数lastEig———<BR>rankTolerance&nbsp;=&nbsp;1e-5;<BR>maxLastEig&nbsp;=&nbsp;sum(diag(D))&nbsp;&gt;&nbsp;rankTolerance;<BR>lastEig&nbsp;=&nbsp;maxLastEig;<BR><BR>%——————————降序排列特征值——————————<BR>eigenvalues&nbsp;=&nbsp;flipud(sort(diag(D)));<BR><BR>%—————————去掉较小的特征值——————————<BR>if&nbsp;lastEig&nbsp;&lt;&nbsp;oldDimension<BR>&nbsp;&nbsp;&nbsp;&nbsp;lowerLimitValue&nbsp;=&nbsp;(eigenvalues(lastEig)&nbsp;+&nbsp;eigenvalues(lastEig&nbsp;+&nbsp;1))/2;<BR>else<BR>&nbsp;&nbsp;&nbsp;&nbsp;lowerLimitValue&nbsp;=&nbsp;eigenvalues(oldDimension)&nbsp;-&nbsp;1;<BR>end<BR>lowerColumns&nbsp;=&nbsp;diag(D)&nbsp;&gt;&nbsp;lowerLimitValue;<BR><BR>%—————去掉较大的特征值(一般没有这一步)——————<BR>if&nbsp;firstEig&nbsp;&gt;&nbsp;1<BR>&nbsp;&nbsp;&nbsp;&nbsp;higherLimitValue&nbsp;=&nbsp;(eigenvalues(firstEig&nbsp;-&nbsp;1)&nbsp;+&nbsp;eigenvalues(firstEig))/2;<BR>else<BR>&nbsp;&nbsp;&nbsp;&nbsp;higherLimitValue&nbsp;=&nbsp;eigenvalues(1)&nbsp;+&nbsp;1;<BR>end<BR>higherColumns&nbsp;=&nbsp;diag(D)&nbsp;&lt;&nbsp;higherLimitValue;<BR><BR>%—————————合并选择的特征值——————————<BR>selectedColumns&nbsp;=lowerColumns&nbsp;&amp;&nbsp;higherColumns;<BR><BR>%—————————输出处理的结果信息—————————<BR>fprintf('Selected[&nbsp;%d&nbsp;]&nbsp;dimensions.\n',sum(selectedColumns));<BR>fprintf('Smallest&nbsp;remaining&nbsp;(non-zero)&nbsp;eigenvalue[&nbsp;%g&nbsp;]\n',eigenvalues(lastEig));<BR>fprintf('Largest&nbsp;remaining&nbsp;(non-zero)&nbsp;eigenvalue[&nbsp;%g&nbsp;]\n',eigenvalues(firstEig));<BR>fprintf('Sum&nbsp;of&nbsp;removed&nbsp;eigenvalue[&nbsp;%g&nbsp;]\n',sum(diag(D)&nbsp;.*&nbsp;(~selectedColumns)));<BR><BR>%———————选择相应的特征值和特征向量———————<BR>E&nbsp;=&nbsp;selcol(E,selectedColumns);<BR>D&nbsp;=&nbsp;selcol(selcol(D,selectedColumns)',selectedColumns);<BR><BR>%——————————计算白化矩阵———————————<BR>whiteningMatrix&nbsp;=&nbsp;inv(sqrt(D))&nbsp;*&nbsp;E';<BR>dewhiteningMatrix&nbsp;=&nbsp;E&nbsp;*&nbsp;sqrt(D);<BR><BR>%——————————提取主分量————————————<BR>y&nbsp;=&nbsp;whiteningMatrix&nbsp;*&nbsp;mixedsig;<BR><BR>%——————————行选择子程序———————————<BR>function&nbsp;newMatrix&nbsp;=&nbsp;selcol(oldMatrix,maskVector)<BR>if&nbsp;size(maskVector,1)~&nbsp;=&nbsp;size(oldMatrix,2)<BR>&nbsp;&nbsp;&nbsp;&nbsp;error('The&nbsp;mask&nbsp;vector&nbsp;and&nbsp;matrix&nbsp;are&nbsp;of&nbsp;uncompatible&nbsp;size.');<BR>end<BR>numTaken&nbsp;=&nbsp;0;<BR>for&nbsp;i&nbsp;=&nbsp;1:size(maskVector,1)<BR>&nbsp;&nbsp;&nbsp;&nbsp;if&nbsp;maskVector(i,1)&nbsp;==&nbsp;1<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;takingMask(1,numTaken&nbsp;+&nbsp;1)&nbsp;==&nbsp;i;<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;numTaken&nbsp;=&nbsp;numTaken&nbsp;+&nbsp;1;<BR>&nbsp;&nbsp;&nbsp;&nbsp;end<BR>end<BR>newMatrix&nbsp;=&nbsp;oldMatrix(:,takingMask);<BR></DIV></DIV><BR><BR></DIV>
<DIV class=Content-body>[本日志由 dinga 于 2007-04-17 09:36 AM 编辑]<BR><IMG 
style="MARGIN: 4px 2px -4px 0px" alt="" 
src="PCA算法程序 - Dinga's Blog.files/From.gif"><STRONG>文章来自:</STRONG> <A 
href="http://www.dinga.cn/" target=_blank>本站原创</A><BR><IMG 
style="MARGIN: 4px 2px -4px 0px" alt="" 
src="PCA算法程序 - Dinga's Blog.files/icon_trackback.gif"><STRONG>引用通告地址:</STRONG> 
<SPAN id=tburl><A href="javascript:showTrackBack()">查看引用地址</A></SPAN><BR>
<SCRIPT type=text/javascript>
// 引用地址显示
function showTrackBack(){
var tb_url_text 
tb_url_text = '<a href="http://www.dinga.cn/trackback.asp?tbID=250&key=123456" target="_blank">http://www.dinga.cn/trackback.asp?tbID=250&key=123456</a>'
document.getElementById("tburl").innerHTML = tb_url_text
}
</SCRIPT>
<IMG style="MARGIN: 4px 2px -4px 0px" alt="" 
src="PCA算法程序 - Dinga's Blog.files/tag.gif"><STRONG>Tags:</STRONG> <A 
href="http://www.dinga.cn/default.asp?tag=PCA">PCA</A><A style="DISPLAY: none" 
href="http://technorati.com/tag/PCA" rel=tag>PCA</A> <A 
href="http://www.dinga.cn/default.asp?tag=%E7%AE%97%E6%B3%95">算法</A><A 
style="DISPLAY: none" href="http://technorati.com/tag/算法" rel=tag>算法</A> <A 
href="http://www.dinga.cn/default.asp?tag=PCA%E7%AE%97%E6%B3%95">PCA算法</A><A 
style="DISPLAY: none" href="http://technorati.com/tag/PCA算法" rel=tag>PCA算法</A> 
<A href="http://www.dinga.cn/default.asp?tag=matlab">matlab</A><A 
style="DISPLAY: none" href="http://technorati.com/tag/matlab" rel=tag>matlab</A> 
<BR></DIV>
<DIV class=Content-bottom>
<DIV class=ContentBLeft></DIV>
<DIV class=ContentBRight></DIV>评论: 5 | 引用: 0 | 查看次数: 2529 </DIV></DIV></DIV><A 
accessKey=C href="http://www.dinga.cn/article.asp?id=250#comm_top" 
name=comm_top></A>
<DIV class=pageContent>
<DIV class=page style="FLOAT: right">
<UL>
  <LI class=pageNumber><STRONG>1</STRONG></LI></UL></DIV></DIV>
<DIV class=comment>
<DIV class=commenttop><A href="javascript:addQuote('betty','commcontent_1263')" 
name=comm_1263><IMG style="MARGIN: 0px 4px -3px 0px" alt="" 
src="PCA算法程序 - Dinga's Blog.files/icon_quote.gif" border=0></A><A 
href="http://www.dinga.cn/member.asp?action=view&amp;memName=betty"><STRONG>betty</STRONG></A> 
<SPAN class=commentinfo>[2008-03-19 10:18 AM]</SPAN></DIV>
<DIV class=commentcontent id=commcontent_1263>没有定义mixdsig。。</DIV></DIV>
<DIV class=comment>
<DIV class=commenttop><A 
href="javascript:addQuote('hihello','commcontent_1204')" name=comm_1204><IMG 
style="MARGIN: 0px 4px -3px 0px" alt="" 
src="PCA算法程序 - Dinga's Blog.files/icon_quote.gif" border=0></A><A 
href="http://www.dinga.cn/member.asp?action=view&amp;memName=hihello"><STRONG>hihello</STRONG></A> 
<SPAN class=commentinfo>[2007-12-08 00:31 AM]</SPAN></DIV>
<DIV class=commentcontent id=commcontent_1204>takingMask这个函数没有定义</DIV></DIV>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -