📄 profile.c
字号:
return; } /* * We buffer the global profiler buffer into a per-CPU * queue and thus reduce the number of global (and possibly * NUMA-alien) accesses. The write-queue is self-coalescing: */ local_irq_save(flags); do { for (j = 0; j < PROFILE_GRPSZ; ++j) { if (hits[i + j].pc == pc) { hits[i + j].hits += nr_hits; goto out; } else if (!hits[i + j].hits) { hits[i + j].pc = pc; hits[i + j].hits = nr_hits; goto out; } } i = (i + secondary) & (NR_PROFILE_HIT - 1); } while (i != primary); /* * Add the current hit(s) and flush the write-queue out * to the global buffer: */ atomic_add(nr_hits, &prof_buffer[pc]); for (i = 0; i < NR_PROFILE_HIT; ++i) { atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]); hits[i].pc = hits[i].hits = 0; }out: local_irq_restore(flags); put_cpu();}static int __devinit profile_cpu_callback(struct notifier_block *info, unsigned long action, void *__cpu){ int node, cpu = (unsigned long)__cpu; struct page *page; switch (action) { case CPU_UP_PREPARE: case CPU_UP_PREPARE_FROZEN: node = cpu_to_node(cpu); per_cpu(cpu_profile_flip, cpu) = 0; if (!per_cpu(cpu_profile_hits, cpu)[1]) { page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO | GFP_THISNODE, 0); if (!page) return NOTIFY_BAD; per_cpu(cpu_profile_hits, cpu)[1] = page_address(page); } if (!per_cpu(cpu_profile_hits, cpu)[0]) { page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO | GFP_THISNODE, 0); if (!page) goto out_free; per_cpu(cpu_profile_hits, cpu)[0] = page_address(page); } break; out_free: page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]); per_cpu(cpu_profile_hits, cpu)[1] = NULL; __free_page(page); return NOTIFY_BAD; case CPU_ONLINE: case CPU_ONLINE_FROZEN: cpu_set(cpu, prof_cpu_mask); break; case CPU_UP_CANCELED: case CPU_UP_CANCELED_FROZEN: case CPU_DEAD: case CPU_DEAD_FROZEN: cpu_clear(cpu, prof_cpu_mask); if (per_cpu(cpu_profile_hits, cpu)[0]) { page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]); per_cpu(cpu_profile_hits, cpu)[0] = NULL; __free_page(page); } if (per_cpu(cpu_profile_hits, cpu)[1]) { page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]); per_cpu(cpu_profile_hits, cpu)[1] = NULL; __free_page(page); } break; } return NOTIFY_OK;}#else /* !CONFIG_SMP */#define profile_flip_buffers() do { } while (0)#define profile_discard_flip_buffers() do { } while (0)#define profile_cpu_callback NULLvoid profile_hits(int type, void *__pc, unsigned int nr_hits){ unsigned long pc; if (prof_on != type || !prof_buffer) return; pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift; atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);}#endif /* !CONFIG_SMP */EXPORT_SYMBOL_GPL(profile_hits);void profile_tick(int type){ struct pt_regs *regs = get_irq_regs(); if (type == CPU_PROFILING && timer_hook) timer_hook(regs); if (!user_mode(regs) && cpu_isset(smp_processor_id(), prof_cpu_mask)) profile_hit(type, (void *)profile_pc(regs));}#ifdef CONFIG_PROC_FS#include <linux/proc_fs.h>#include <asm/uaccess.h>#include <asm/ptrace.h>static int prof_cpu_mask_read_proc (char *page, char **start, off_t off, int count, int *eof, void *data){ int len = cpumask_scnprintf(page, count, *(cpumask_t *)data); if (count - len < 2) return -EINVAL; len += sprintf(page + len, "\n"); return len;}static int prof_cpu_mask_write_proc (struct file *file, const char __user *buffer, unsigned long count, void *data){ cpumask_t *mask = (cpumask_t *)data; unsigned long full_count = count, err; cpumask_t new_value; err = cpumask_parse_user(buffer, count, new_value); if (err) return err; *mask = new_value; return full_count;}void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir){ struct proc_dir_entry *entry; /* create /proc/irq/prof_cpu_mask */ if (!(entry = create_proc_entry("prof_cpu_mask", 0600, root_irq_dir))) return; entry->data = (void *)&prof_cpu_mask; entry->read_proc = prof_cpu_mask_read_proc; entry->write_proc = prof_cpu_mask_write_proc;}/* * This function accesses profiling information. The returned data is * binary: the sampling step and the actual contents of the profile * buffer. Use of the program readprofile is recommended in order to * get meaningful info out of these data. */static ssize_tread_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos){ unsigned long p = *ppos; ssize_t read; char * pnt; unsigned int sample_step = 1 << prof_shift; profile_flip_buffers(); if (p >= (prof_len+1)*sizeof(unsigned int)) return 0; if (count > (prof_len+1)*sizeof(unsigned int) - p) count = (prof_len+1)*sizeof(unsigned int) - p; read = 0; while (p < sizeof(unsigned int) && count > 0) { if (put_user(*((char *)(&sample_step)+p),buf)) return -EFAULT; buf++; p++; count--; read++; } pnt = (char *)prof_buffer + p - sizeof(atomic_t); if (copy_to_user(buf,(void *)pnt,count)) return -EFAULT; read += count; *ppos += read; return read;}/* * Writing to /proc/profile resets the counters * * Writing a 'profiling multiplier' value into it also re-sets the profiling * interrupt frequency, on architectures that support this. */static ssize_t write_profile(struct file *file, const char __user *buf, size_t count, loff_t *ppos){#ifdef CONFIG_SMP extern int setup_profiling_timer (unsigned int multiplier); if (count == sizeof(int)) { unsigned int multiplier; if (copy_from_user(&multiplier, buf, sizeof(int))) return -EFAULT; if (setup_profiling_timer(multiplier)) return -EINVAL; }#endif profile_discard_flip_buffers(); memset(prof_buffer, 0, prof_len * sizeof(atomic_t)); return count;}static const struct file_operations proc_profile_operations = { .read = read_profile, .write = write_profile,};#ifdef CONFIG_SMPstatic void __init profile_nop(void *unused){}static int __init create_hash_tables(void){ int cpu; for_each_online_cpu(cpu) { int node = cpu_to_node(cpu); struct page *page; page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO | GFP_THISNODE, 0); if (!page) goto out_cleanup; per_cpu(cpu_profile_hits, cpu)[1] = (struct profile_hit *)page_address(page); page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO | GFP_THISNODE, 0); if (!page) goto out_cleanup; per_cpu(cpu_profile_hits, cpu)[0] = (struct profile_hit *)page_address(page); } return 0;out_cleanup: prof_on = 0; smp_mb(); on_each_cpu(profile_nop, NULL, 0, 1); for_each_online_cpu(cpu) { struct page *page; if (per_cpu(cpu_profile_hits, cpu)[0]) { page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]); per_cpu(cpu_profile_hits, cpu)[0] = NULL; __free_page(page); } if (per_cpu(cpu_profile_hits, cpu)[1]) { page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]); per_cpu(cpu_profile_hits, cpu)[1] = NULL; __free_page(page); } } return -1;}#else#define create_hash_tables() ({ 0; })#endifstatic int __init create_proc_profile(void){ struct proc_dir_entry *entry; if (!prof_on) return 0; if (create_hash_tables()) return -1; if (!(entry = create_proc_entry("profile", S_IWUSR | S_IRUGO, NULL))) return 0; entry->proc_fops = &proc_profile_operations; entry->size = (1+prof_len) * sizeof(atomic_t); hotcpu_notifier(profile_cpu_callback, 0); return 0;}module_init(create_proc_profile);#endif /* CONFIG_PROC_FS */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -