⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 wait.c

📁 linux 2.6.19 kernel source code before patching
💻 C
字号:
/* * Generic waiting primitives. * * (C) 2004 William Irwin, Oracle */#include <linux/init.h>#include <linux/module.h>#include <linux/sched.h>#include <linux/mm.h>#include <linux/wait.h>#include <linux/hash.h>void init_waitqueue_head(wait_queue_head_t *q){	spin_lock_init(&q->lock);	INIT_LIST_HEAD(&q->task_list);}EXPORT_SYMBOL(init_waitqueue_head);void fastcall add_wait_queue(wait_queue_head_t *q, wait_queue_t *wait){	unsigned long flags;	wait->flags &= ~WQ_FLAG_EXCLUSIVE;	spin_lock_irqsave(&q->lock, flags);	__add_wait_queue(q, wait);	spin_unlock_irqrestore(&q->lock, flags);}EXPORT_SYMBOL(add_wait_queue);void fastcall add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *wait){	unsigned long flags;	wait->flags |= WQ_FLAG_EXCLUSIVE;	spin_lock_irqsave(&q->lock, flags);	__add_wait_queue_tail(q, wait);	spin_unlock_irqrestore(&q->lock, flags);}EXPORT_SYMBOL(add_wait_queue_exclusive);void fastcall remove_wait_queue(wait_queue_head_t *q, wait_queue_t *wait){	unsigned long flags;	spin_lock_irqsave(&q->lock, flags);	__remove_wait_queue(q, wait);	spin_unlock_irqrestore(&q->lock, flags);}EXPORT_SYMBOL(remove_wait_queue);/* * Note: we use "set_current_state()" _after_ the wait-queue add, * because we need a memory barrier there on SMP, so that any * wake-function that tests for the wait-queue being active * will be guaranteed to see waitqueue addition _or_ subsequent * tests in this thread will see the wakeup having taken place. * * The spin_unlock() itself is semi-permeable and only protects * one way (it only protects stuff inside the critical region and * stops them from bleeding out - it would still allow subsequent * loads to move into the critical region). */void fastcallprepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state){	unsigned long flags;	wait->flags &= ~WQ_FLAG_EXCLUSIVE;	spin_lock_irqsave(&q->lock, flags);	if (list_empty(&wait->task_list))		__add_wait_queue(q, wait);	/*	 * don't alter the task state if this is just going to	 * queue an async wait queue callback	 */	if (is_sync_wait(wait))		set_current_state(state);	spin_unlock_irqrestore(&q->lock, flags);}EXPORT_SYMBOL(prepare_to_wait);void fastcallprepare_to_wait_exclusive(wait_queue_head_t *q, wait_queue_t *wait, int state){	unsigned long flags;	wait->flags |= WQ_FLAG_EXCLUSIVE;	spin_lock_irqsave(&q->lock, flags);	if (list_empty(&wait->task_list))		__add_wait_queue_tail(q, wait);	/*	 * don't alter the task state if this is just going to 	 * queue an async wait queue callback	 */	if (is_sync_wait(wait))		set_current_state(state);	spin_unlock_irqrestore(&q->lock, flags);}EXPORT_SYMBOL(prepare_to_wait_exclusive);void fastcall finish_wait(wait_queue_head_t *q, wait_queue_t *wait){	unsigned long flags;	__set_current_state(TASK_RUNNING);	/*	 * We can check for list emptiness outside the lock	 * IFF:	 *  - we use the "careful" check that verifies both	 *    the next and prev pointers, so that there cannot	 *    be any half-pending updates in progress on other	 *    CPU's that we haven't seen yet (and that might	 *    still change the stack area.	 * and	 *  - all other users take the lock (ie we can only	 *    have _one_ other CPU that looks at or modifies	 *    the list).	 */	if (!list_empty_careful(&wait->task_list)) {		spin_lock_irqsave(&q->lock, flags);		list_del_init(&wait->task_list);		spin_unlock_irqrestore(&q->lock, flags);	}}EXPORT_SYMBOL(finish_wait);int autoremove_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key){	int ret = default_wake_function(wait, mode, sync, key);	if (ret)		list_del_init(&wait->task_list);	return ret;}EXPORT_SYMBOL(autoremove_wake_function);int wake_bit_function(wait_queue_t *wait, unsigned mode, int sync, void *arg){	struct wait_bit_key *key = arg;	struct wait_bit_queue *wait_bit		= container_of(wait, struct wait_bit_queue, wait);	if (wait_bit->key.flags != key->flags ||			wait_bit->key.bit_nr != key->bit_nr ||			test_bit(key->bit_nr, key->flags))		return 0;	else		return autoremove_wake_function(wait, mode, sync, key);}EXPORT_SYMBOL(wake_bit_function);/* * To allow interruptible waiting and asynchronous (i.e. nonblocking) * waiting, the actions of __wait_on_bit() and __wait_on_bit_lock() are * permitted return codes. Nonzero return codes halt waiting and return. */int __sched fastcall__wait_on_bit(wait_queue_head_t *wq, struct wait_bit_queue *q,			int (*action)(void *), unsigned mode){	int ret = 0;	do {		prepare_to_wait(wq, &q->wait, mode);		if (test_bit(q->key.bit_nr, q->key.flags))			ret = (*action)(q->key.flags);	} while (test_bit(q->key.bit_nr, q->key.flags) && !ret);	finish_wait(wq, &q->wait);	return ret;}EXPORT_SYMBOL(__wait_on_bit);int __sched fastcall out_of_line_wait_on_bit(void *word, int bit,					int (*action)(void *), unsigned mode){	wait_queue_head_t *wq = bit_waitqueue(word, bit);	DEFINE_WAIT_BIT(wait, word, bit);	return __wait_on_bit(wq, &wait, action, mode);}EXPORT_SYMBOL(out_of_line_wait_on_bit);int __sched fastcall__wait_on_bit_lock(wait_queue_head_t *wq, struct wait_bit_queue *q,			int (*action)(void *), unsigned mode){	int ret = 0;	do {		prepare_to_wait_exclusive(wq, &q->wait, mode);		if (test_bit(q->key.bit_nr, q->key.flags)) {			if ((ret = (*action)(q->key.flags)))				break;		}	} while (test_and_set_bit(q->key.bit_nr, q->key.flags));	finish_wait(wq, &q->wait);	return ret;}EXPORT_SYMBOL(__wait_on_bit_lock);int __sched fastcall out_of_line_wait_on_bit_lock(void *word, int bit,					int (*action)(void *), unsigned mode){	wait_queue_head_t *wq = bit_waitqueue(word, bit);	DEFINE_WAIT_BIT(wait, word, bit);	return __wait_on_bit_lock(wq, &wait, action, mode);}EXPORT_SYMBOL(out_of_line_wait_on_bit_lock);void fastcall __wake_up_bit(wait_queue_head_t *wq, void *word, int bit){	struct wait_bit_key key = __WAIT_BIT_KEY_INITIALIZER(word, bit);	if (waitqueue_active(wq))		__wake_up(wq, TASK_INTERRUPTIBLE|TASK_UNINTERRUPTIBLE, 1, &key);}EXPORT_SYMBOL(__wake_up_bit);/** * wake_up_bit - wake up a waiter on a bit * @word: the word being waited on, a kernel virtual address * @bit: the bit of the word being waited on * * There is a standard hashed waitqueue table for generic use. This * is the part of the hashtable's accessor API that wakes up waiters * on a bit. For instance, if one were to have waiters on a bitflag, * one would call wake_up_bit() after clearing the bit. * * In order for this to function properly, as it uses waitqueue_active() * internally, some kind of memory barrier must be done prior to calling * this. Typically, this will be smp_mb__after_clear_bit(), but in some * cases where bitflags are manipulated non-atomically under a lock, one * may need to use a less regular barrier, such fs/inode.c's smp_mb(), * because spin_unlock() does not guarantee a memory barrier. */void fastcall wake_up_bit(void *word, int bit){	__wake_up_bit(bit_waitqueue(word, bit), word, bit);}EXPORT_SYMBOL(wake_up_bit);fastcall wait_queue_head_t *bit_waitqueue(void *word, int bit){	const int shift = BITS_PER_LONG == 32 ? 5 : 6;	const struct zone *zone = page_zone(virt_to_page(word));	unsigned long val = (unsigned long)word << shift | bit;	return &zone->wait_table[hash_long(val, zone->wait_table_bits)];}EXPORT_SYMBOL(bit_waitqueue);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -