⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 posix-timers.c

📁 linux 2.6.19 kernel source code before patching
💻 C
📖 第 1 页 / 共 2 页
字号:
/* * linux/kernel/posix-timers.c * * * 2002-10-15  Posix Clocks & timers *                           by George Anzinger george@mvista.com * *			     Copyright (C) 2002 2003 by MontaVista Software. * * 2004-06-01  Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug. *			     Copyright (C) 2004 Boris Hu * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA *//* These are all the functions necessary to implement * POSIX clocks & timers */#include <linux/mm.h>#include <linux/interrupt.h>#include <linux/slab.h>#include <linux/time.h>#include <linux/mutex.h>#include <asm/uaccess.h>#include <asm/semaphore.h>#include <linux/list.h>#include <linux/init.h>#include <linux/compiler.h>#include <linux/idr.h>#include <linux/posix-timers.h>#include <linux/syscalls.h>#include <linux/wait.h>#include <linux/workqueue.h>#include <linux/module.h>/* * Management arrays for POSIX timers.	 Timers are kept in slab memory * Timer ids are allocated by an external routine that keeps track of the * id and the timer.  The external interface is: * * void *idr_find(struct idr *idp, int id);           to find timer_id <id> * int idr_get_new(struct idr *idp, void *ptr);       to get a new id and *                                                    related it to <ptr> * void idr_remove(struct idr *idp, int id);          to release <id> * void idr_init(struct idr *idp);                    to initialize <idp> *                                                    which we supply. * The idr_get_new *may* call slab for more memory so it must not be * called under a spin lock.  Likewise idr_remore may release memory * (but it may be ok to do this under a lock...). * idr_find is just a memory look up and is quite fast.  A -1 return * indicates that the requested id does not exist. *//* * Lets keep our timers in a slab cache :-) */static struct kmem_cache *posix_timers_cache;static struct idr posix_timers_id;static DEFINE_SPINLOCK(idr_lock);/* * we assume that the new SIGEV_THREAD_ID shares no bits with the other * SIGEV values.  Here we put out an error if this assumption fails. */#if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \                       ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))#error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"#endif/* * The timer ID is turned into a timer address by idr_find(). * Verifying a valid ID consists of: * * a) checking that idr_find() returns other than -1. * b) checking that the timer id matches the one in the timer itself. * c) that the timer owner is in the callers thread group. *//* * CLOCKs: The POSIX standard calls for a couple of clocks and allows us *	    to implement others.  This structure defines the various *	    clocks and allows the possibility of adding others.	 We *	    provide an interface to add clocks to the table and expect *	    the "arch" code to add at least one clock that is high *	    resolution.	 Here we define the standard CLOCK_REALTIME as a *	    1/HZ resolution clock. * * RESOLUTION: Clock resolution is used to round up timer and interval *	    times, NOT to report clock times, which are reported with as *	    much resolution as the system can muster.  In some cases this *	    resolution may depend on the underlying clock hardware and *	    may not be quantifiable until run time, and only then is the *	    necessary code is written.	The standard says we should say *	    something about this issue in the documentation... * * FUNCTIONS: The CLOCKs structure defines possible functions to handle *	    various clock functions.  For clocks that use the standard *	    system timer code these entries should be NULL.  This will *	    allow dispatch without the overhead of indirect function *	    calls.  CLOCKS that depend on other sources (e.g. WWV or GPS) *	    must supply functions here, even if the function just returns *	    ENOSYS.  The standard POSIX timer management code assumes the *	    following: 1.) The k_itimer struct (sched.h) is used for the *	    timer.  2.) The list, it_lock, it_clock, it_id and it_process *	    fields are not modified by timer code. * *          At this time all functions EXCEPT clock_nanosleep can be *          redirected by the CLOCKS structure.  Clock_nanosleep is in *          there, but the code ignores it. * * Permissions: It is assumed that the clock_settime() function defined *	    for each clock will take care of permission checks.	 Some *	    clocks may be set able by any user (i.e. local process *	    clocks) others not.	 Currently the only set able clock we *	    have is CLOCK_REALTIME and its high res counter part, both of *	    which we beg off on and pass to do_sys_settimeofday(). */static struct k_clock posix_clocks[MAX_CLOCKS];/* * These ones are defined below. */static int common_nsleep(const clockid_t, int flags, struct timespec *t,			 struct timespec __user *rmtp);static void common_timer_get(struct k_itimer *, struct itimerspec *);static int common_timer_set(struct k_itimer *, int,			    struct itimerspec *, struct itimerspec *);static int common_timer_del(struct k_itimer *timer);static enum hrtimer_restart posix_timer_fn(struct hrtimer *data);static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags);static inline void unlock_timer(struct k_itimer *timr, unsigned long flags){	spin_unlock_irqrestore(&timr->it_lock, flags);}/* * Call the k_clock hook function if non-null, or the default function. */#define CLOCK_DISPATCH(clock, call, arglist) \ 	((clock) < 0 ? posix_cpu_##call arglist : \ 	 (posix_clocks[clock].call != NULL \ 	  ? (*posix_clocks[clock].call) arglist : common_##call arglist))/* * Default clock hook functions when the struct k_clock passed * to register_posix_clock leaves a function pointer null. * * The function common_CALL is the default implementation for * the function pointer CALL in struct k_clock. */static inline int common_clock_getres(const clockid_t which_clock,				      struct timespec *tp){	tp->tv_sec = 0;	tp->tv_nsec = posix_clocks[which_clock].res;	return 0;}/* * Get real time for posix timers */static int common_clock_get(clockid_t which_clock, struct timespec *tp){	ktime_get_real_ts(tp);	return 0;}static inline int common_clock_set(const clockid_t which_clock,				   struct timespec *tp){	return do_sys_settimeofday(tp, NULL);}static int common_timer_create(struct k_itimer *new_timer){	hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);	return 0;}/* * Return nonzero if we know a priori this clockid_t value is bogus. */static inline int invalid_clockid(const clockid_t which_clock){	if (which_clock < 0)	/* CPU clock, posix_cpu_* will check it */		return 0;	if ((unsigned) which_clock >= MAX_CLOCKS)		return 1;	if (posix_clocks[which_clock].clock_getres != NULL)		return 0;	if (posix_clocks[which_clock].res != 0)		return 0;	return 1;}/* * Get monotonic time for posix timers */static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp){	ktime_get_ts(tp);	return 0;}/* * Initialize everything, well, just everything in Posix clocks/timers ;) */static __init int init_posix_timers(void){	struct k_clock clock_realtime = {		.clock_getres = hrtimer_get_res,	};	struct k_clock clock_monotonic = {		.clock_getres = hrtimer_get_res,		.clock_get = posix_ktime_get_ts,		.clock_set = do_posix_clock_nosettime,	};	register_posix_clock(CLOCK_REALTIME, &clock_realtime);	register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic);	posix_timers_cache = kmem_cache_create("posix_timers_cache",					sizeof (struct k_itimer), 0, 0, NULL, NULL);	idr_init(&posix_timers_id);	return 0;}__initcall(init_posix_timers);static void schedule_next_timer(struct k_itimer *timr){	struct hrtimer *timer = &timr->it.real.timer;	if (timr->it.real.interval.tv64 == 0)		return;	timr->it_overrun += hrtimer_forward(timer, timer->base->get_time(),					    timr->it.real.interval);	timr->it_overrun_last = timr->it_overrun;	timr->it_overrun = -1;	++timr->it_requeue_pending;	hrtimer_restart(timer);}/* * This function is exported for use by the signal deliver code.  It is * called just prior to the info block being released and passes that * block to us.  It's function is to update the overrun entry AND to * restart the timer.  It should only be called if the timer is to be * restarted (i.e. we have flagged this in the sys_private entry of the * info block). * * To protect aginst the timer going away while the interrupt is queued, * we require that the it_requeue_pending flag be set. */void do_schedule_next_timer(struct siginfo *info){	struct k_itimer *timr;	unsigned long flags;	timr = lock_timer(info->si_tid, &flags);	if (timr && timr->it_requeue_pending == info->si_sys_private) {		if (timr->it_clock < 0)			posix_cpu_timer_schedule(timr);		else			schedule_next_timer(timr);		info->si_overrun = timr->it_overrun_last;	}	if (timr)		unlock_timer(timr, flags);}int posix_timer_event(struct k_itimer *timr,int si_private){	memset(&timr->sigq->info, 0, sizeof(siginfo_t));	timr->sigq->info.si_sys_private = si_private;	/* Send signal to the process that owns this timer.*/	timr->sigq->info.si_signo = timr->it_sigev_signo;	timr->sigq->info.si_errno = 0;	timr->sigq->info.si_code = SI_TIMER;	timr->sigq->info.si_tid = timr->it_id;	timr->sigq->info.si_value = timr->it_sigev_value;	if (timr->it_sigev_notify & SIGEV_THREAD_ID) {		struct task_struct *leader;		int ret = send_sigqueue(timr->it_sigev_signo, timr->sigq,					timr->it_process);		if (likely(ret >= 0))			return ret;		timr->it_sigev_notify = SIGEV_SIGNAL;		leader = timr->it_process->group_leader;		put_task_struct(timr->it_process);		timr->it_process = leader;	}	return send_group_sigqueue(timr->it_sigev_signo, timr->sigq,				   timr->it_process);}EXPORT_SYMBOL_GPL(posix_timer_event);/* * This function gets called when a POSIX.1b interval timer expires.  It * is used as a callback from the kernel internal timer.  The * run_timer_list code ALWAYS calls with interrupts on. * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers. */static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer){	struct k_itimer *timr;	unsigned long flags;	int si_private = 0;	enum hrtimer_restart ret = HRTIMER_NORESTART;	timr = container_of(timer, struct k_itimer, it.real.timer);	spin_lock_irqsave(&timr->it_lock, flags);	if (timr->it.real.interval.tv64 != 0)		si_private = ++timr->it_requeue_pending;	if (posix_timer_event(timr, si_private)) {		/*		 * signal was not sent because of sig_ignor		 * we will not get a call back to restart it AND		 * it should be restarted.		 */		if (timr->it.real.interval.tv64 != 0) {			ktime_t now = hrtimer_cb_get_time(timer);			/*			 * FIXME: What we really want, is to stop this			 * timer completely and restart it in case the			 * SIG_IGN is removed. This is a non trivial			 * change which involves sighand locking			 * (sigh !), which we don't want to do late in			 * the release cycle.			 *			 * For now we just let timers with an interval			 * less than a jiffie expire every jiffie to			 * avoid softirq starvation in case of SIG_IGN			 * and a very small interval, which would put			 * the timer right back on the softirq pending			 * list. By moving now ahead of time we trick			 * hrtimer_forward() to expire the timer			 * later, while we still maintain the overrun			 * accuracy, but have some inconsistency in			 * the timer_gettime() case. This is at least			 * better than a starved softirq. A more			 * complex fix which solves also another related			 * inconsistency is already in the pipeline.			 */#ifdef CONFIG_HIGH_RES_TIMERS			{				ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ);				if (timr->it.real.interval.tv64 < kj.tv64)					now = ktime_add(now, kj);			}#endif			timr->it_overrun +=				hrtimer_forward(timer, now,						timr->it.real.interval);			ret = HRTIMER_RESTART;			++timr->it_requeue_pending;		}	}	unlock_timer(timr, flags);	return ret;}static struct task_struct * good_sigevent(sigevent_t * event){	struct task_struct *rtn = current->group_leader;	if ((event->sigev_notify & SIGEV_THREAD_ID ) &&		(!(rtn = find_task_by_pid(event->sigev_notify_thread_id)) ||		 rtn->tgid != current->tgid ||		 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))		return NULL;	if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&	    ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))		return NULL;	return rtn;}void register_posix_clock(const clockid_t clock_id, struct k_clock *new_clock){	if ((unsigned) clock_id >= MAX_CLOCKS) {		printk("POSIX clock register failed for clock_id %d\n",		       clock_id);		return;	}	posix_clocks[clock_id] = *new_clock;}EXPORT_SYMBOL_GPL(register_posix_clock);static struct k_itimer * alloc_posix_timer(void){	struct k_itimer *tmr;	tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);	if (!tmr)		return tmr;	if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {		kmem_cache_free(posix_timers_cache, tmr);		tmr = NULL;	}	return tmr;}#define IT_ID_SET	1#define IT_ID_NOT_SET	0static void release_posix_timer(struct k_itimer *tmr, int it_id_set){	if (it_id_set) {		unsigned long flags;		spin_lock_irqsave(&idr_lock, flags);		idr_remove(&posix_timers_id, tmr->it_id);		spin_unlock_irqrestore(&idr_lock, flags);	}	sigqueue_free(tmr->sigq);	if (unlikely(tmr->it_process) &&	    tmr->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))		put_task_struct(tmr->it_process);	kmem_cache_free(posix_timers_cache, tmr);}/* Create a POSIX.1b interval timer. */asmlinkage longsys_timer_create(const clockid_t which_clock,		 struct sigevent __user *timer_event_spec,		 timer_t __user * created_timer_id){	int error = 0;	struct k_itimer *new_timer = NULL;	int new_timer_id;	struct task_struct *process = NULL;	unsigned long flags;	sigevent_t event;	int it_id_set = IT_ID_NOT_SET;	if (invalid_clockid(which_clock))		return -EINVAL;	new_timer = alloc_posix_timer();	if (unlikely(!new_timer))		return -EAGAIN;	spin_lock_init(&new_timer->it_lock); retry:	if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) {		error = -EAGAIN;		goto out;	}	spin_lock_irq(&idr_lock);	error = idr_get_new(&posix_timers_id, (void *) new_timer,			    &new_timer_id);	spin_unlock_irq(&idr_lock);	if (error == -EAGAIN)		goto retry;	else if (error) {		/*		 * Wierd looking, but we return EAGAIN if the IDR is		 * full (proper POSIX return value for this)		 */		error = -EAGAIN;		goto out;	}	it_id_set = IT_ID_SET;	new_timer->it_id = (timer_t) new_timer_id;	new_timer->it_clock = which_clock;	new_timer->it_overrun = -1;	error = CLOCK_DISPATCH(which_clock, timer_create, (new_timer));	if (error)		goto out;	/*	 * return the timer_id now.  The next step is hard to	 * back out if there is an error.	 */	if (copy_to_user(created_timer_id,

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -