📄 timekeeping.c
字号:
/* * linux/kernel/time/timekeeping.c * * Kernel timekeeping code and accessor functions * * This code was moved from linux/kernel/timer.c. * Please see that file for copyright and history logs. * */#include <linux/module.h>#include <linux/interrupt.h>#include <linux/percpu.h>#include <linux/init.h>#include <linux/mm.h>#include <linux/sysdev.h>#include <linux/clocksource.h>#include <linux/jiffies.h>#include <linux/time.h>#include <linux/tick.h>/* * This read-write spinlock protects us from races in SMP while * playing with xtime and avenrun. */__attribute__((weak)) __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);EXPORT_SYMBOL(xtime_lock);/* * The current time * wall_to_monotonic is what we need to add to xtime (or xtime corrected * for sub jiffie times) to get to monotonic time. Monotonic is pegged * at zero at system boot time, so wall_to_monotonic will be negative, * however, we will ALWAYS keep the tv_nsec part positive so we can use * the usual normalization. */struct timespec xtime __attribute__ ((aligned (16)));struct timespec wall_to_monotonic __attribute__ ((aligned (16)));EXPORT_SYMBOL(xtime);static struct clocksource *clock; /* pointer to current clocksource */#ifdef CONFIG_GENERIC_TIME/** * __get_nsec_offset - Returns nanoseconds since last call to periodic_hook * * private function, must hold xtime_lock lock when being * called. Returns the number of nanoseconds since the * last call to update_wall_time() (adjusted by NTP scaling) */static inline s64 __get_nsec_offset(void){ cycle_t cycle_now, cycle_delta; s64 ns_offset; /* read clocksource: */ cycle_now = clocksource_read(clock); /* calculate the delta since the last update_wall_time: */ cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; /* convert to nanoseconds: */ ns_offset = cyc2ns(clock, cycle_delta); return ns_offset;}/** * __get_realtime_clock_ts - Returns the time of day in a timespec * @ts: pointer to the timespec to be set * * Returns the time of day in a timespec. Used by * do_gettimeofday() and get_realtime_clock_ts(). */static inline void __get_realtime_clock_ts(struct timespec *ts){ unsigned long seq; s64 nsecs; do { seq = read_seqbegin(&xtime_lock); *ts = xtime; nsecs = __get_nsec_offset(); } while (read_seqretry(&xtime_lock, seq)); timespec_add_ns(ts, nsecs);}/** * getnstimeofday - Returns the time of day in a timespec * @ts: pointer to the timespec to be set * * Returns the time of day in a timespec. */void getnstimeofday(struct timespec *ts){ __get_realtime_clock_ts(ts);}EXPORT_SYMBOL(getnstimeofday);/** * do_gettimeofday - Returns the time of day in a timeval * @tv: pointer to the timeval to be set * * NOTE: Users should be converted to using get_realtime_clock_ts() */void do_gettimeofday(struct timeval *tv){ struct timespec now; __get_realtime_clock_ts(&now); tv->tv_sec = now.tv_sec; tv->tv_usec = now.tv_nsec/1000;}EXPORT_SYMBOL(do_gettimeofday);/** * do_settimeofday - Sets the time of day * @tv: pointer to the timespec variable containing the new time * * Sets the time of day to the new time and update NTP and notify hrtimers */int do_settimeofday(struct timespec *tv){ unsigned long flags; time_t wtm_sec, sec = tv->tv_sec; long wtm_nsec, nsec = tv->tv_nsec; if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) return -EINVAL; write_seqlock_irqsave(&xtime_lock, flags); nsec -= __get_nsec_offset(); wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec); wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec); set_normalized_timespec(&xtime, sec, nsec); set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec); clock->error = 0; ntp_clear(); update_vsyscall(&xtime, clock); write_sequnlock_irqrestore(&xtime_lock, flags); /* signal hrtimers about time change */ clock_was_set(); return 0;}EXPORT_SYMBOL(do_settimeofday);/** * change_clocksource - Swaps clocksources if a new one is available * * Accumulates current time interval and initializes new clocksource */static void change_clocksource(void){ struct clocksource *new; cycle_t now; u64 nsec; new = clocksource_get_next(); if (clock == new) return; now = clocksource_read(new); nsec = __get_nsec_offset(); timespec_add_ns(&xtime, nsec); clock = new; clock->cycle_last = now; clock->error = 0; clock->xtime_nsec = 0; clocksource_calculate_interval(clock, NTP_INTERVAL_LENGTH); tick_clock_notify(); printk(KERN_INFO "Time: %s clocksource has been installed.\n", clock->name);}#elsestatic inline void change_clocksource(void) { }#endif/** * timekeeping_is_continuous - check to see if timekeeping is free running */int timekeeping_is_continuous(void){ unsigned long seq; int ret; do { seq = read_seqbegin(&xtime_lock); ret = clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; } while (read_seqretry(&xtime_lock, seq)); return ret;}/** * read_persistent_clock - Return time in seconds from the persistent clock. * * Weak dummy function for arches that do not yet support it. * Returns seconds from epoch using the battery backed persistent clock. * Returns zero if unsupported. * * XXX - Do be sure to remove it once all arches implement it. */unsigned long __attribute__((weak)) read_persistent_clock(void){ return 0;}/* * timekeeping_init - Initializes the clocksource and common timekeeping values */void __init timekeeping_init(void){ unsigned long flags; unsigned long sec = read_persistent_clock(); write_seqlock_irqsave(&xtime_lock, flags); ntp_clear(); clock = clocksource_get_next(); clocksource_calculate_interval(clock, NTP_INTERVAL_LENGTH); clock->cycle_last = clocksource_read(clock); xtime.tv_sec = sec; xtime.tv_nsec = 0; set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec); write_sequnlock_irqrestore(&xtime_lock, flags);}/* flag for if timekeeping is suspended */static int timekeeping_suspended;/* time in seconds when suspend began */static unsigned long timekeeping_suspend_time;/** * timekeeping_resume - Resumes the generic timekeeping subsystem. * @dev: unused * * This is for the generic clocksource timekeeping. * xtime/wall_to_monotonic/jiffies/etc are * still managed by arch specific suspend/resume code. */static int timekeeping_resume(struct sys_device *dev){ unsigned long flags; unsigned long now = read_persistent_clock(); clocksource_resume(); write_seqlock_irqsave(&xtime_lock, flags); if (now && (now > timekeeping_suspend_time)) { unsigned long sleep_length = now - timekeeping_suspend_time; xtime.tv_sec += sleep_length; wall_to_monotonic.tv_sec -= sleep_length; } /* re-base the last cycle value */ clock->cycle_last = clocksource_read(clock); clock->error = 0; timekeeping_suspended = 0; write_sequnlock_irqrestore(&xtime_lock, flags); touch_softlockup_watchdog(); clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL); /* Resume hrtimers */ hres_timers_resume(); return 0;}static int timekeeping_suspend(struct sys_device *dev, pm_message_t state){ unsigned long flags; write_seqlock_irqsave(&xtime_lock, flags); timekeeping_suspended = 1; timekeeping_suspend_time = read_persistent_clock(); write_sequnlock_irqrestore(&xtime_lock, flags); clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL); return 0;}/* sysfs resume/suspend bits for timekeeping */static struct sysdev_class timekeeping_sysclass = { .resume = timekeeping_resume, .suspend = timekeeping_suspend, set_kset_name("timekeeping"),};static struct sys_device device_timer = { .id = 0, .cls = &timekeeping_sysclass,};static int __init timekeeping_init_device(void){ int error = sysdev_class_register(&timekeeping_sysclass); if (!error) error = sysdev_register(&device_timer); return error;}device_initcall(timekeeping_init_device);/* * If the error is already larger, we look ahead even further * to compensate for late or lost adjustments. */static __always_inline int clocksource_bigadjust(s64 error, s64 *interval, s64 *offset){ s64 tick_error, i; u32 look_ahead, adj; s32 error2, mult; /* * Use the current error value to determine how much to look ahead. * The larger the error the slower we adjust for it to avoid problems * with losing too many ticks, otherwise we would overadjust and * produce an even larger error. The smaller the adjustment the * faster we try to adjust for it, as lost ticks can do less harm * here. This is tuned so that an error of about 1 msec is adusted * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks). */ error2 = clock->error >> (TICK_LENGTH_SHIFT + 22 - 2 * SHIFT_HZ); error2 = abs(error2); for (look_ahead = 0; error2 > 0; look_ahead++) error2 >>= 2; /* * Now calculate the error in (1 << look_ahead) ticks, but first * remove the single look ahead already included in the error. */ tick_error = current_tick_length() >> (TICK_LENGTH_SHIFT - clock->shift + 1); tick_error -= clock->xtime_interval >> 1; error = ((error - tick_error) >> look_ahead) + tick_error; /* Finally calculate the adjustment shift value. */ i = *interval; mult = 1; if (error < 0) { error = -error; *interval = -*interval; *offset = -*offset; mult = -1; } for (adj = 0; error > i; adj++) error >>= 1; *interval <<= adj; *offset <<= adj; return mult << adj;}/* * Adjust the multiplier to reduce the error value, * this is optimized for the most common adjustments of -1,0,1, * for other values we can do a bit more work. */static void clocksource_adjust(struct clocksource *clock, s64 offset){ s64 error, interval = clock->cycle_interval; int adj; error = clock->error >> (TICK_LENGTH_SHIFT - clock->shift - 1); if (error > interval) { error >>= 2; if (likely(error <= interval)) adj = 1; else adj = clocksource_bigadjust(error, &interval, &offset); } else if (error < -interval) { error >>= 2; if (likely(error >= -interval)) { adj = -1; interval = -interval; offset = -offset; } else adj = clocksource_bigadjust(error, &interval, &offset); } else return; clock->mult += adj; clock->xtime_interval += interval; clock->xtime_nsec -= offset; clock->error -= (interval - offset) << (TICK_LENGTH_SHIFT - clock->shift);}/** * update_wall_time - Uses the current clocksource to increment the wall time * * Called from the timer interrupt, must hold a write on xtime_lock. */void update_wall_time(void){ cycle_t offset; /* Make sure we're fully resumed: */ if (unlikely(timekeeping_suspended)) return;#ifdef CONFIG_GENERIC_TIME offset = (clocksource_read(clock) - clock->cycle_last) & clock->mask;#else offset = clock->cycle_interval;#endif clock->xtime_nsec += (s64)xtime.tv_nsec << clock->shift; /* normally this loop will run just once, however in the * case of lost or late ticks, it will accumulate correctly. */ while (offset >= clock->cycle_interval) { /* accumulate one interval */ clock->xtime_nsec += clock->xtime_interval; clock->cycle_last += clock->cycle_interval; offset -= clock->cycle_interval; if (clock->xtime_nsec >= (u64)NSEC_PER_SEC << clock->shift) { clock->xtime_nsec -= (u64)NSEC_PER_SEC << clock->shift; xtime.tv_sec++; second_overflow(); } /* interpolator bits */ time_interpolator_update(clock->xtime_interval >> clock->shift); /* accumulate error between NTP and clock interval */ clock->error += current_tick_length(); clock->error -= clock->xtime_interval << (TICK_LENGTH_SHIFT - clock->shift); } /* correct the clock when NTP error is too big */ clocksource_adjust(clock, offset); /* store full nanoseconds into xtime */ xtime.tv_nsec = (s64)clock->xtime_nsec >> clock->shift; clock->xtime_nsec -= (s64)xtime.tv_nsec << clock->shift; /* check to see if there is a new clocksource to use */ change_clocksource(); update_vsyscall(&xtime, clock);}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -