⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 time.c

📁 linux 2.6.19 kernel source code before patching
💻 C
📖 第 1 页 / 共 2 页
字号:
	tv->tv_usec = usec;}EXPORT_SYMBOL(do_gettimeofday);#else#ifndef CONFIG_GENERIC_TIME/* * Simulate gettimeofday using do_gettimeofday which only allows a timeval * and therefore only yields usec accuracy */void getnstimeofday(struct timespec *tv){	struct timeval x;	do_gettimeofday(&x);	tv->tv_sec = x.tv_sec;	tv->tv_nsec = x.tv_usec * NSEC_PER_USEC;}EXPORT_SYMBOL_GPL(getnstimeofday);#endif#endif/* Converts Gregorian date to seconds since 1970-01-01 00:00:00. * Assumes input in normal date format, i.e. 1980-12-31 23:59:59 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59. * * [For the Julian calendar (which was used in Russia before 1917, * Britain & colonies before 1752, anywhere else before 1582, * and is still in use by some communities) leave out the * -year/100+year/400 terms, and add 10.] * * This algorithm was first published by Gauss (I think). * * WARNING: this function will overflow on 2106-02-07 06:28:16 on * machines were long is 32-bit! (However, as time_t is signed, we * will already get problems at other places on 2038-01-19 03:14:08) */unsigned longmktime(const unsigned int year0, const unsigned int mon0,       const unsigned int day, const unsigned int hour,       const unsigned int min, const unsigned int sec){	unsigned int mon = mon0, year = year0;	/* 1..12 -> 11,12,1..10 */	if (0 >= (int) (mon -= 2)) {		mon += 12;	/* Puts Feb last since it has leap day */		year -= 1;	}	return ((((unsigned long)		  (year/4 - year/100 + year/400 + 367*mon/12 + day) +		  year*365 - 719499	    )*24 + hour /* now have hours */	  )*60 + min /* now have minutes */	)*60 + sec; /* finally seconds */}EXPORT_SYMBOL(mktime);/** * set_normalized_timespec - set timespec sec and nsec parts and normalize * * @ts:		pointer to timespec variable to be set * @sec:	seconds to set * @nsec:	nanoseconds to set * * Set seconds and nanoseconds field of a timespec variable and * normalize to the timespec storage format * * Note: The tv_nsec part is always in the range of * 	0 <= tv_nsec < NSEC_PER_SEC * For negative values only the tv_sec field is negative ! */void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec){	while (nsec >= NSEC_PER_SEC) {		nsec -= NSEC_PER_SEC;		++sec;	}	while (nsec < 0) {		nsec += NSEC_PER_SEC;		--sec;	}	ts->tv_sec = sec;	ts->tv_nsec = nsec;}/** * ns_to_timespec - Convert nanoseconds to timespec * @nsec:       the nanoseconds value to be converted * * Returns the timespec representation of the nsec parameter. */struct timespec ns_to_timespec(const s64 nsec){	struct timespec ts;	if (!nsec)		return (struct timespec) {0, 0};	ts.tv_sec = div_long_long_rem_signed(nsec, NSEC_PER_SEC, &ts.tv_nsec);	if (unlikely(nsec < 0))		set_normalized_timespec(&ts, ts.tv_sec, ts.tv_nsec);	return ts;}EXPORT_SYMBOL(ns_to_timespec);/** * ns_to_timeval - Convert nanoseconds to timeval * @nsec:       the nanoseconds value to be converted * * Returns the timeval representation of the nsec parameter. */struct timeval ns_to_timeval(const s64 nsec){	struct timespec ts = ns_to_timespec(nsec);	struct timeval tv;	tv.tv_sec = ts.tv_sec;	tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;	return tv;}EXPORT_SYMBOL(ns_to_timeval);/* * When we convert to jiffies then we interpret incoming values * the following way: * * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET) * * - 'too large' values [that would result in larger than *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too. * * - all other values are converted to jiffies by either multiplying *   the input value by a factor or dividing it with a factor * * We must also be careful about 32-bit overflows. */unsigned long msecs_to_jiffies(const unsigned int m){	/*	 * Negative value, means infinite timeout:	 */	if ((int)m < 0)		return MAX_JIFFY_OFFSET;#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)	/*	 * HZ is equal to or smaller than 1000, and 1000 is a nice	 * round multiple of HZ, divide with the factor between them,	 * but round upwards:	 */	return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)	/*	 * HZ is larger than 1000, and HZ is a nice round multiple of	 * 1000 - simply multiply with the factor between them.	 *	 * But first make sure the multiplication result cannot	 * overflow:	 */	if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))		return MAX_JIFFY_OFFSET;	return m * (HZ / MSEC_PER_SEC);#else	/*	 * Generic case - multiply, round and divide. But first	 * check that if we are doing a net multiplication, that	 * we wouldnt overflow:	 */	if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))		return MAX_JIFFY_OFFSET;	return (m * HZ + MSEC_PER_SEC - 1) / MSEC_PER_SEC;#endif}EXPORT_SYMBOL(msecs_to_jiffies);unsigned long usecs_to_jiffies(const unsigned int u){	if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))		return MAX_JIFFY_OFFSET;#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)	return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)	return u * (HZ / USEC_PER_SEC);#else	return (u * HZ + USEC_PER_SEC - 1) / USEC_PER_SEC;#endif}EXPORT_SYMBOL(usecs_to_jiffies);/* * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note * that a remainder subtract here would not do the right thing as the * resolution values don't fall on second boundries.  I.e. the line: * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding. * * Rather, we just shift the bits off the right. * * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec * value to a scaled second value. */unsigned longtimespec_to_jiffies(const struct timespec *value){	unsigned long sec = value->tv_sec;	long nsec = value->tv_nsec + TICK_NSEC - 1;	if (sec >= MAX_SEC_IN_JIFFIES){		sec = MAX_SEC_IN_JIFFIES;		nsec = 0;	}	return (((u64)sec * SEC_CONVERSION) +		(((u64)nsec * NSEC_CONVERSION) >>		 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;}EXPORT_SYMBOL(timespec_to_jiffies);voidjiffies_to_timespec(const unsigned long jiffies, struct timespec *value){	/*	 * Convert jiffies to nanoseconds and separate with	 * one divide.	 */	u64 nsec = (u64)jiffies * TICK_NSEC;	value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &value->tv_nsec);}EXPORT_SYMBOL(jiffies_to_timespec);/* Same for "timeval" * * Well, almost.  The problem here is that the real system resolution is * in nanoseconds and the value being converted is in micro seconds. * Also for some machines (those that use HZ = 1024, in-particular), * there is a LARGE error in the tick size in microseconds. * The solution we use is to do the rounding AFTER we convert the * microsecond part.  Thus the USEC_ROUND, the bits to be shifted off. * Instruction wise, this should cost only an additional add with carry * instruction above the way it was done above. */unsigned longtimeval_to_jiffies(const struct timeval *value){	unsigned long sec = value->tv_sec;	long usec = value->tv_usec;	if (sec >= MAX_SEC_IN_JIFFIES){		sec = MAX_SEC_IN_JIFFIES;		usec = 0;	}	return (((u64)sec * SEC_CONVERSION) +		(((u64)usec * USEC_CONVERSION + USEC_ROUND) >>		 (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;}EXPORT_SYMBOL(timeval_to_jiffies);void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value){	/*	 * Convert jiffies to nanoseconds and separate with	 * one divide.	 */	u64 nsec = (u64)jiffies * TICK_NSEC;	long tv_usec;	value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &tv_usec);	tv_usec /= NSEC_PER_USEC;	value->tv_usec = tv_usec;}EXPORT_SYMBOL(jiffies_to_timeval);/* * Convert jiffies/jiffies_64 to clock_t and back. */clock_t jiffies_to_clock_t(long x){#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0	return x / (HZ / USER_HZ);#else	u64 tmp = (u64)x * TICK_NSEC;	do_div(tmp, (NSEC_PER_SEC / USER_HZ));	return (long)tmp;#endif}EXPORT_SYMBOL(jiffies_to_clock_t);unsigned long clock_t_to_jiffies(unsigned long x){#if (HZ % USER_HZ)==0	if (x >= ~0UL / (HZ / USER_HZ))		return ~0UL;	return x * (HZ / USER_HZ);#else	u64 jif;	/* Don't worry about loss of precision here .. */	if (x >= ~0UL / HZ * USER_HZ)		return ~0UL;	/* .. but do try to contain it here */	jif = x * (u64) HZ;	do_div(jif, USER_HZ);	return jif;#endif}EXPORT_SYMBOL(clock_t_to_jiffies);u64 jiffies_64_to_clock_t(u64 x){#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0	do_div(x, HZ / USER_HZ);#else	/*	 * There are better ways that don't overflow early,	 * but even this doesn't overflow in hundreds of years	 * in 64 bits, so..	 */	x *= TICK_NSEC;	do_div(x, (NSEC_PER_SEC / USER_HZ));#endif	return x;}EXPORT_SYMBOL(jiffies_64_to_clock_t);u64 nsec_to_clock_t(u64 x){#if (NSEC_PER_SEC % USER_HZ) == 0	do_div(x, (NSEC_PER_SEC / USER_HZ));#elif (USER_HZ % 512) == 0	x *= USER_HZ/512;	do_div(x, (NSEC_PER_SEC / 512));#else	/*         * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,         * overflow after 64.99 years.         * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...         */	x *= 9;	do_div(x, (unsigned long)((9ull * NSEC_PER_SEC + (USER_HZ/2)) /				  USER_HZ));#endif	return x;}#if (BITS_PER_LONG < 64)u64 get_jiffies_64(void){	unsigned long seq;	u64 ret;	do {		seq = read_seqbegin(&xtime_lock);		ret = jiffies_64;	} while (read_seqretry(&xtime_lock, seq));	return ret;}EXPORT_SYMBOL(get_jiffies_64);#endifEXPORT_SYMBOL(jiffies);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -