📄 nt.cpp
字号:
// Package : omnithread
// omnithread/nt.cc Created : 6/95 tjr
//
// Copyright (C) 1999 AT&T Laboratories Cambridge. All Rights Reserved.
//
// This file is part of the omnithread library
//
// The omnithread library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Library General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Library General Public License for more details.
//
// You should have received a copy of the GNU Library General Public
// License along with this library; if not, write to the Free
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
// 02111-1307, USA
//
//
// Implementation of OMNI thread abstraction for NT threads
//
#include <stdlib.h>
#include <errno.h>
#include "omnithread.h"
#include <process.h>
#define DB(x) // x
//#include <iostream.h> or #include <iostream> if DB is on.
static void get_time_now(unsigned long* abs_sec, unsigned long* abs_nsec);
///////////////////////////////////////////////////////////////////////////
//
// Mutex
//
///////////////////////////////////////////////////////////////////////////
omni_mutex::omni_mutex(void)
{
InitializeCriticalSection(&crit);
}
omni_mutex::~omni_mutex(void)
{
DeleteCriticalSection(&crit);
}
void
omni_mutex::lock(void)
{
EnterCriticalSection(&crit);
}
void
omni_mutex::unlock(void)
{
LeaveCriticalSection(&crit);
}
///////////////////////////////////////////////////////////////////////////
//
// Condition variable
//
///////////////////////////////////////////////////////////////////////////
//
// Condition variables are tricky to implement using NT synchronisation
// primitives, since none of them have the atomic "release mutex and wait to be
// signalled" which is central to the idea of a condition variable. To get
// around this the solution is to record which threads are waiting and
// explicitly wake up those threads.
//
// Here we implement a condition variable using a list of waiting threads
// (protected by a critical section), and a per-thread semaphore (which
// actually only needs to be a binary semaphore).
//
// To wait on the cv, a thread puts itself on the list of waiting threads for
// that cv, then releases the mutex and waits on its own personal semaphore. A
// signalling thread simply takes a thread from the head of the list and kicks
// that thread's semaphore. Broadcast is simply implemented by kicking the
// semaphore of each waiting thread.
//
// The only other tricky part comes when a thread gets a timeout from a timed
// wait on its semaphore. Between returning with a timeout from the wait and
// entering the critical section, a signalling thread could get in, kick the
// waiting thread's semaphore and remove it from the list. If this happens,
// the waiting thread's semaphore is now out of step so it needs resetting, and
// the thread should indicate that it was signalled rather than that it timed
// out.
//
// It is possible that the thread calling wait or timedwait is not a
// omni_thread. In this case we have to provide a temporary data structure,
// i.e. for the duration of the call, for the thread to link itself on the
// list of waiting threads. _internal_omni_thread_dummy provides such
// a data structure and _internal_omni_thread_helper is a helper class to
// deal with this special case for wait() and timedwait(). Once created,
// the _internal_omni_thread_dummy is cached for use by the next wait() or
// timedwait() call from a non-omni_thread. This is probably worth doing
// because creating a Semaphore is quite heavy weight.
class _internal_omni_thread_helper;
class _internal_omni_thread_dummy : public omni_thread {
public:
inline _internal_omni_thread_dummy() : next(0) { }
inline ~_internal_omni_thread_dummy() { }
friend class _internal_omni_thread_helper;
private:
_internal_omni_thread_dummy* next;
};
class _internal_omni_thread_helper {
public:
inline _internal_omni_thread_helper() {
d = 0;
t = omni_thread::self();
if (!t) {
omni_mutex_lock sync(cachelock);
if (cache) {
d = cache;
cache = cache->next;
}
else {
d = new _internal_omni_thread_dummy;
}
t = d;
}
}
inline ~_internal_omni_thread_helper() {
if (d) {
omni_mutex_lock sync(cachelock);
d->next = cache;
cache = d;
}
}
inline operator omni_thread* () { return t; }
inline omni_thread* operator->() { return t; }
static _internal_omni_thread_dummy* cache;
static omni_mutex cachelock;
private:
_internal_omni_thread_dummy* d;
omni_thread* t;
};
_internal_omni_thread_dummy* _internal_omni_thread_helper::cache = 0;
omni_mutex _internal_omni_thread_helper::cachelock;
omni_condition::omni_condition(omni_mutex* m) : mutex(m)
{
InitializeCriticalSection(&crit);
waiting_head = waiting_tail = NULL;
}
omni_condition::~omni_condition(void)
{
DeleteCriticalSection(&crit);
DB( if (waiting_head != NULL) {
cerr << "omni_condition::~omni_condition: list of waiting threads "
<< "is not empty\n";
} )
}
void
omni_condition::wait(void)
{
_internal_omni_thread_helper me;
EnterCriticalSection(&crit);
me->cond_next = NULL;
me->cond_prev = waiting_tail;
if (waiting_head == NULL)
waiting_head = me;
else
waiting_tail->cond_next = me;
waiting_tail = me;
me->cond_waiting = TRUE;
LeaveCriticalSection(&crit);
mutex->unlock();
DWORD result = WaitForSingleObject(me->cond_semaphore, INFINITE);
mutex->lock();
if (result != WAIT_OBJECT_0)
throw omni_thread_fatal(GetLastError());
}
int
omni_condition::timedwait(unsigned long abs_sec, unsigned long abs_nsec)
{
_internal_omni_thread_helper me;
EnterCriticalSection(&crit);
me->cond_next = NULL;
me->cond_prev = waiting_tail;
if (waiting_head == NULL)
waiting_head = me;
else
waiting_tail->cond_next = me;
waiting_tail = me;
me->cond_waiting = TRUE;
LeaveCriticalSection(&crit);
mutex->unlock();
unsigned long now_sec, now_nsec;
get_time_now(&now_sec, &now_nsec);
DWORD timeout = (abs_sec-now_sec) * 1000 + (abs_nsec-now_nsec) / 1000000;
if ((abs_sec <= now_sec) && ((abs_sec < now_sec) || (abs_nsec < abs_nsec)))
timeout = 0;
DWORD result = WaitForSingleObject(me->cond_semaphore, timeout);
if (result == WAIT_TIMEOUT) {
EnterCriticalSection(&crit);
if (me->cond_waiting) {
if (me->cond_prev != NULL)
me->cond_prev->cond_next = me->cond_next;
else
waiting_head = me->cond_next;
if (me->cond_next != NULL)
me->cond_next->cond_prev = me->cond_prev;
else
waiting_tail = me->cond_prev;
me->cond_waiting = FALSE;
LeaveCriticalSection(&crit);
mutex->lock();
return 0;
}
//
// We timed out but another thread still signalled us. Wait for
// the semaphore (it _must_ have been signalled) to decrement it
// again. Return that we were signalled, not that we timed out.
//
LeaveCriticalSection(&crit);
result = WaitForSingleObject(me->cond_semaphore, INFINITE);
}
if (result != WAIT_OBJECT_0)
throw omni_thread_fatal(GetLastError());
mutex->lock();
return 1;
}
void
omni_condition::signal(void)
{
EnterCriticalSection(&crit);
if (waiting_head != NULL) {
omni_thread* t = waiting_head;
waiting_head = t->cond_next;
if (waiting_head == NULL)
waiting_tail = NULL;
else
waiting_head->cond_prev = NULL;
t->cond_waiting = FALSE;
if (!ReleaseSemaphore(t->cond_semaphore, 1, NULL)) {
int rc = GetLastError();
LeaveCriticalSection(&crit);
throw omni_thread_fatal(rc);
}
}
LeaveCriticalSection(&crit);
}
void
omni_condition::broadcast(void)
{
EnterCriticalSection(&crit);
while (waiting_head != NULL) {
omni_thread* t = waiting_head;
waiting_head = t->cond_next;
if (waiting_head == NULL)
waiting_tail = NULL;
else
waiting_head->cond_prev = NULL;
t->cond_waiting = FALSE;
if (!ReleaseSemaphore(t->cond_semaphore, 1, NULL)) {
int rc = GetLastError();
LeaveCriticalSection(&crit);
throw omni_thread_fatal(rc);
}
}
LeaveCriticalSection(&crit);
}
///////////////////////////////////////////////////////////////////////////
//
// Counting semaphore
//
///////////////////////////////////////////////////////////////////////////
#define SEMAPHORE_MAX 0x7fffffff
omni_semaphore::omni_semaphore(unsigned int initial)
{
nt_sem = CreateSemaphore(NULL, initial, SEMAPHORE_MAX, NULL);
if (nt_sem == NULL) {
DB( cerr << "omni_semaphore::omni_semaphore: CreateSemaphore error "
<< GetLastError() << endl );
throw omni_thread_fatal(GetLastError());
}
}
omni_semaphore::~omni_semaphore(void)
{
if (!CloseHandle(nt_sem)) {
DB( cerr << "omni_semaphore::~omni_semaphore: CloseHandle error "
<< GetLastError() << endl );
throw omni_thread_fatal(GetLastError());
}
}
void
omni_semaphore::wait(void)
{
if (WaitForSingleObject(nt_sem, INFINITE) != WAIT_OBJECT_0)
throw omni_thread_fatal(GetLastError());
}
int
omni_semaphore::trywait(void)
{
switch (WaitForSingleObject(nt_sem, 0)) {
case WAIT_OBJECT_0:
return 1;
case WAIT_TIMEOUT:
return 0;
}
throw omni_thread_fatal(GetLastError());
return 0; /* keep msvc++ happy */
}
void
omni_semaphore::post(void)
{
if (!ReleaseSemaphore(nt_sem, 1, NULL))
throw omni_thread_fatal(GetLastError());
}
///////////////////////////////////////////////////////////////////////////
//
// Thread
//
///////////////////////////////////////////////////////////////////////////
//
// Static variables
//
int omni_thread::init_t::count = 0;
omni_mutex* omni_thread::next_id_mutex;
int omni_thread::next_id = 0;
static DWORD self_tls_index;
//
// Initialisation function (gets called before any user code).
//
omni_thread::init_t::init_t(void)
{
if (count++ != 0) // only do it once however many objects get created.
return;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -