📄 draft-ietf-dnsop-ipv6-dns-issues-11.txt
字号:
with the owner of that address space -- so, assuming stronger form of authorization for reverse DNS updates than an address association is generally infeasible. Moreover, the reverse zones must be cleaned up by an unspecified janitorial process: the node does not typically know a priori that it will be disconnected, and cannot send a DNS update using the correct source address to remove a record. A problem with defining the clean-up process is that it is difficult to ensure that a specific IP address and the corresponding record are no longer being used. Considering the huge address space, and the unlikelihood of collision within 64 bits of the interface identifiers, a process which would remove the record after no traffic has been seen from a node in a long period of time (e.g., a month or year) might be one possible approach. To insert or update the record, the node must discover the DNS server to send the update to somehow, similar to as discussed in Section 6.2. One way to automate this is looking up the DNS server authoritative (e.g., through SOA record) for the IP address being updated, but the security material (unless the IP address-based authorization is trusted) must also be established by some other means. One should note that Cryptographically Generated Addresses [RFC3972] (CGAs) may require a slightly different kind of treatment. CGAs are addresses where the interface identifier is calculated from a public key, a modifier (used as a nonce), the subnet prefix, and other data. Depending on the usage profile, CGAs might or might not be changed periodically due to e.g., privacy reasons. As the CGA address is not predicatable, a reverse record can only reasonably be inserted in the DNS by the node which generates the address.Durand, et al. Expires January 17, 2006 [Page 17]Internet-Draft Considerations with IPv6 DNS July 20057.4 DDNS with DHCP With DHCPv4, the reverse DNS name is typically already inserted to the DNS that reflects to the name (e.g., "dhcp-67.example.com"). One can assume similar practice may become commonplace with DHCPv6 as well; all such mappings would be pre-configured, and would require no updating. If a more explicit control is required, similar considerations as with SLAAC apply, except for the fact that typically one must update a reverse DNS record instead of inserting one (if an address assignment policy that reassigns disused addresses is adopted) and updating a record seems like a slightly more difficult thing to secure. However, it is yet uncertain how DHCPv6 is going to be used for address assignment. Note that when using DHCP, either the host or the DHCP server could perform the DNS updates; see the implications in Section 6.2. If disused addresses were to be reassigned, host-based DDNS reverse updates would need policy considerations for DNS record modification, as noted above. On the other hand, if disused address were not to be assigned, host-based DNS reverse updates would have similar considerations as SLAAC in Section 7.3. Server-based updates have similar properties except that the janitorial process could be integrated with DHCP address assignment.7.5 DDNS with Dynamic Prefix Delegation In cases where a prefix, instead of an address, is being used and updated, one should consider what is the location of the server where DDNS updates are made. That is, where the DNS server is located: 1. At the same organization as the prefix delegator. 2. At the site where the prefixes are delegated to. In this case, the authority of the DNS reverse zone corresponding to the delegated prefix is also delegated to the site. 3. Elsewhere; this implies a relationship between the site and where DNS server is located, and such a relationship should be rather straightforward to secure as well. Like in the previous case, the authority of the DNS reverse zone is also delegated. In the first case, managing the reverse DNS (delegation) is simpler as the DNS server and the prefix delegator are in the same administrative domain (as there is no need to delegate anything at all); alternatively, the prefix delegator might forgo DDNS reverseDurand, et al. Expires January 17, 2006 [Page 18]Internet-Draft Considerations with IPv6 DNS July 2005 capability altogether, and use e.g., wildcard records (as described in Section 7.2). In the other cases, it can be slighly more difficult, particularly as the site will have to configure the DNS server to be authoritative for the delegated reverse zone, implying automatic configuration of the DNS server -- as the prefix may be dynamic. Managing the DDNS reverse updates is typically simple in the second case, as the updated server is located at the local site, and arguably IP address-based authentication could be sufficient (or if not, setting up security relationships would be simpler). As there is an explicit (security) relationship between the parties in the third case, setting up the security relationships to allow reverse DDNS updates should be rather straightforward as well (but IP address-based authentication might not be acceptable). In the first case, however, setting up and managing such relationships might be a lot more difficult.8. Miscellaneous DNS Considerations This section describes miscellaneous considerations about DNS which seem related to IPv6, for which no better place has been found in this document.8.1 NAT-PT with DNS-ALG The DNS-ALG component of NAT-PT mangles A records to look like AAAA records to the IPv6-only nodes. Numerous problems have been identified with DNS-ALG [I-D.ietf-v6ops-natpt-to-exprmntl]. This is a strong reason not to use NAT-PT in the first place.8.2 Renumbering Procedures and Applications' Use of DNS One of the most difficult problems of systematic IP address renumbering procedures [I-D.ietf-v6ops-renumbering-procedure] is that an application which looks up a DNS name disregards information such as TTL, and uses the result obtained from DNS as long as it happens to be stored in the memory of the application. For applications which run for a long time, this could be days, weeks or even months; some applications may be clever enough to organize the data structures and functions in such a manner that look-ups get refreshed now and then. While the issue appears to have a clear solution, "fix the applications", practically this is not reasonable immediate advice; the TTL information is not typically available in the APIs and libraries (so, the advice becomes "fix the applications, APIs and libraries"), and a lot more analysis is needed on how to practicallyDurand, et al. Expires January 17, 2006 [Page 19]Internet-Draft Considerations with IPv6 DNS July 2005 go about to achieve the ultimate goal of avoiding using the names longer than expected.9. Acknowledgements Some recommendations (Section 4.3, Section 5.1) about IPv6 service provisioning were moved here from [I-D.ietf-v6ops-mech-v2] by Erik Nordmark and Bob Gilligan. Havard Eidnes and Michael Patton provided useful feedback and improvements. Scott Rose, Rob Austein, Masataka Ohta, and Mark Andrews helped in clarifying the issues regarding additional data and the use of TTL. Jefsey Morfin, Ralph Droms, Peter Koch, Jinmei Tatuya, Iljitsch van Beijnum, Edward Lewis, and Rob Austein provided useful feedback during the WG last call. Thomas Narten provided extensive feedback during the IESG evaluation.10. Security Considerations This document reviews the operational procedures for IPv6 DNS operations and does not have security considerations in itself. However, it is worth noting that in particular with Dynamic DNS Updates, security models based on the source address validation are very weak and cannot be recommended -- they could only be considered in the environments where ingress filtering [RFC3704] has been deployed. On the other hand, it should be noted that setting up an authorization mechanism (e.g., a shared secret, or public-private keys) between a node and the DNS server has to be done manually, and may require quite a bit of time and expertise. To re-emphasize what was already stated, the reverse+forward DNS check provides very weak security at best, and the only (questionable) security-related use for them may be in conjunction with other mechanisms when authenticating a user.11. References11.1 Normative References [I-D.ietf-dnsop-ipv6-dns-configuration] Jeong, J., "IPv6 Host Configuration of DNS Server Information Approaches", draft-ietf-dnsop-ipv6-dns-configuration-06 (work in progress), May 2005. [I-D.ietf-ipv6-unique-local-addr] Hinden, R. and B. Haberman, "Unique Local IPv6 Unicast Addresses", draft-ietf-ipv6-unique-local-addr-09 (work in progress), January 2005.Durand, et al. Expires January 17, 2006 [Page 20]Internet-Draft Considerations with IPv6 DNS July 2005 [I-D.ietf-v6ops-renumbering-procedure] Baker, F., "Procedures for Renumbering an IPv6 Network without a Flag Day", draft-ietf-v6ops-renumbering-procedure-05 (work in progress), March 2005. [RFC1034] Mockapetris, P., "Domain names - concepts and facilities", STD 13, RFC 1034, November 1987. [RFC2136] Vixie, P., Thomson, S., Rekhter, Y., and J. Bound, "Dynamic Updates in the Domain Name System (DNS UPDATE)", RFC 2136, April 1997. [RFC2181] Elz, R. and R. Bush, "Clarifications to the DNS Specification", RFC 2181, July 1997. [RFC2182] Elz, R., Bush, R., Bradner, S., and M. Patton, "Selection and Operation of Secondary DNS Servers", BCP 16, RFC 2182, July 1997. [RFC2462] Thomson, S. and T. Narten, "IPv6 Stateless Address Autoconfiguration", RFC 2462, December 1998. [RFC2671] Vixie, P., "Extension Mechanisms for DNS (EDNS0)", RFC 2671, August 1999. [RFC2821] Klensin, J., "Simple Mail Transfer Protocol", RFC 2821, April 2001. [RFC3007] Wellington, B., "Secure Domain Name System (DNS) Dynamic Update", RFC 3007, November 2000. [RFC3041] Narten, T. and R. Draves, "Privacy Extensions for Stateless Address Autoconfiguration in IPv6", RFC 3041, January 2001. [RFC3056] Carpenter, B. and K. Moore, "Connection of IPv6 Domains via IPv4 Clouds", RFC 3056, February 2001. [RFC3152] Bush, R., "Delegation of IP6.ARPA", BCP 49, RFC 3152, August 2001. [RFC3315] Droms, R., Bound, J., Volz, B., Lemon, T., Perkins, C., and M. Carney, "Dynamic Host Configuration Protocol for IPv6 (DHCPv6)", RFC 3315, July 2003. [RFC3363] Bush, R., Durand, A., Fink, B., Gudmundsson, O., and T. Hain, "Representing Internet Protocol version 6 (IPv6)Durand, et al. Expires January 17, 2006 [Page 21]Internet-Draft Considerations with IPv6 DNS July 2005 Addresses in the Domain Name System (DNS)", RFC 3363, August 2002. [RFC3364] Austein, R., "Tradeoffs in Domain Name System (DNS) Support for Internet Protocol version 6 (IPv6)", RFC 3364, August 2002. [RFC3513] Hinden, R. and S. Deering, "Internet Protocol Version 6 (IPv6) Addressing Architecture", RFC 3513, April 2003. [RFC3596] Thomson, S., Huitema, C., Ksinant, V., and M. Souissi, "DNS Extensions to Support IP Version 6", RFC 3596, October 2003. [RFC3646] Droms, R., "DNS Configuration options for Dynamic Host Configuration Protocol for IPv6 (DHCPv6)", RFC 3646, December 2003. [RFC3736] Droms, R., "Stateless Dynamic Host Configuration Protocol (DHCP) Service for IPv6", RFC 3736, April 2004. [RFC3879] Huitema, C. and B. Carpenter, "Deprecating Site Local Addresses", RFC 3879, September 2004. [RFC3901] Durand, A. and J. Ihren, "DNS IPv6 Transport Operational Guidelines", BCP 91, RFC 3901, September 2004. [RFC4038] Shin, M-K., Hong, Y-G., Hagino, J., Savola, P., and E. Castro, "Application Aspects of IPv6 Transition", RFC 4038, March 2005. [RFC4074] Morishita, Y. and T. Jinmei, "Common Misbehavior Against DNS Queries for IPv6 Addresses", RFC 4074, May 2005.11.2 Informative References [I-D.durand-dnsop-dont-publish] Durand, A. and T. Chown, "To publish, or not to publish, that is the question.", draft-durand-dnsop-dont-publish-00 (work in progress), February 2005.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -