📄 calcdest.cc
字号:
time_transition = 0.0; position.X = position.Y = position.Z = 0.0; destination.X = destination.Y = destination.Z = 0.0; direction.X = direction.Y = direction.Z = 0.0; speed = 0.0; neighbor = new Neighbor[NODES]; if(neighbor == 0) { perror("new"); exit(1); } LIST_INIT(&traj); for(i = 1; i < NODES; i++) { neighbor[i].index = i; neighbor[i].reachable = (index == i) ? 1 : 0; neighbor[i].time_transition = 0.0; }}voidNode::RandomPosition(){ position.X = uniform() * MAXX; position.Y = uniform() * MAXY; position.Z = 0.0;}voidNode::RandomDestination(){ destination.X = uniform() * MAXX; destination.Y = uniform() * MAXY; destination.Z = 0.0; assert(destination != position);}voidNode::RandomSpeed(){ speed = uniform() * MAXSPEED; assert(speed != 0.0);}voidNode::Update(){ struct setdest *setdest = traj.lh_first; position += (speed * (TIME - time_update)) * direction; if(TIME == time_arrival) { if (NULL == setdest) { destination = position; direction.X = direction.Y = direction.Z = 0.0; speed = 0.0; time_arrival = MAXTIME + 1; } else { vector v; destination.X = setdest->X; destination.Y = setdest->Y; speed = setdest->speed; if (0.0 == speed) { // it's a pause at the current location if (LIST_NEXT(setdest,traj)) time_arrival = LIST_NEXT(setdest,traj)->time; else time_arrival = MAXTIME + 1; } else { // we're moving somewhere, when do we get there? v = destination - position; direction = v / v.length(); time_arrival = TIME + v.length() / speed; } LIST_REMOVE(setdest,traj); free(setdest); } } time_update = TIME; time_transition = 0.0;}voidNode::UpdateNeighbors(){ static Node *n2; static Neighbor *m1, *m2; static vector D, B, v1, v2; static double a, b, c, t1, t2, Q; static u_int32_t i, reachable; v1 = speed * direction; /* * Only need to go from INDEX --> N for each one since links * are symmetric. */ for(i = index+1; i < NODES; i++) { m1 = &neighbor[i]; n2 = &NodeList[i]; m2 = &n2->neighbor[index]; assert(i == m1->index); assert(m1->index == n2->index); assert(index == m2->index); assert(m1->reachable == m2->reachable); reachable = m1->reachable; /* ================================================== Determine Reachability ================================================== */ { vector d = position - n2->position; if(d.length() < RANGE) {#ifdef SANITY_CHECKS if(TIME > 0.0 && m1->reachable == 0) assert(RANGE - d.length() < ROUND_ERROR);#endif m1->reachable = m2->reachable = 1; } // Boundary condition handled below. else {#ifdef SANITY_CHECKS if(TIME > 0.0 && m1->reachable == 1) assert(d.length() - RANGE < ROUND_ERROR);#endif m1->reachable = m2->reachable = 0; }#ifdef DEBUG fprintf(stdout, "# %.6f (%d, %d) %.2fm\n", TIME, index, m1->index, d.length());#endif } /* ================================================== Determine Next Event Time ================================================== */ v2 = n2->speed * n2->direction; D = v2 - v1; B = n2->position - position; a = (D.X * D.X) + (D.Y * D.Y) + (D.Z * D.Z); b = 2 * ((D.X * B.X) + (D.Y * B.Y) + (D.Z * B.Z)); c = (B.X * B.X) + (B.Y * B.Y) + (B.Z * B.Z) - (RANGE * RANGE); if(a == 0.0) { /* * No Finite Solution */ m1->time_transition= 0.0; m2->time_transition= 0.0; goto next; } Q = b * b - 4 * a * c; if(Q < 0.0) { /* * No real roots. */ m1->time_transition = 0.0; m2->time_transition = 0.0; goto next; } Q = sqrt(Q); t1 = (-b + Q) / (2 * a); t2 = (-b - Q) / (2 * a); // Stupid Rounding/Boundary Cases if(t1 > 0.0 && t1 < ROUND_ERROR) t1 = 0.0; if(t1 < 0.0 && -t1 < ROUND_ERROR) t1 = 0.0; if(t2 > 0.0 && t2 < ROUND_ERROR) t2 = 0.0; if(t2 < 0.0 && -t2 < ROUND_ERROR) t2 = 0.0; if(t1 < 0.0 && t2 < 0.0) { /* * No "future" time solution. */ m1->time_transition = 0.0; m2->time_transition = 0.0; goto next; } /* * Boundary conditions. */ if((t1 == 0.0 && t2 > 0.0) || (t2 == 0.0 && t1 > 0.0)) { m1->reachable = m2->reachable = 1; m1->time_transition = m2->time_transition = TIME + max(t1, t2); } else if((t1 == 0.0 && t2 < 0.0) || (t2 == 0.0 && t1 < 0.0)) { m1->reachable = m2->reachable = 0; m1->time_transition = m2->time_transition = 0.0; } /* * Non-boundary conditions. */ else if(t1 > 0.0 && t2 > 0.0) { m1->time_transition = TIME + min(t1, t2); m2->time_transition = TIME + min(t1, t2); } else if(t1 > 0.0) { m1->time_transition = TIME + t1; m2->time_transition = TIME + t1; } else { m1->time_transition = TIME + t2; m2->time_transition = TIME + t2; } /* ================================================== Update the transition times for both NODEs. ================================================== */ if(time_transition == 0.0 || (m1->time_transition && time_transition > m1->time_transition)) { time_transition = m1->time_transition; } if(n2->time_transition == 0.0 || (m2->time_transition && n2->time_transition > m2->time_transition)) { n2->time_transition = m2->time_transition; } next: if(reachable != m1->reachable && TIME > 0.0) { LinkChangeCount++; link_changes++; n2->link_changes++; } }}voidNode::Dump(){ Neighbor *m; u_int32_t i; fprintf(stdout, "Node: %d\tpos: (%.2f, %.2f, %.2f) dst: (%.2f, %.2f, %.2f)\n", index, position.X, position.Y, position.Z, destination.X, destination.Y, destination.Z); fprintf(stdout, "\tdir: (%.2f, %.2f, %.2f) speed: %.2f\n", direction.X, direction.Y, direction.Z, speed); fprintf(stdout, "\tArrival: %.2f, Update: %.2f, Transition: %.2f\n", time_arrival, time_update, time_transition); for(i = 1; i < NODES; i++) { m = &neighbor[i]; fprintf(stdout, "\tNeighbor: %d (%x), Reachable: %d, Transition Time: %.2f\n", m->index, (int) m, m->reachable, m->time_transition); }}/* ====================================================================== Dijkstra's Shortest Path Algoritm ====================================================================== */void dumpall(){ u_int32_t i; fprintf(stdout, "\nTime: %.2f\n", TIME); for(i = 1; i < NODES; i++) { NodeList[i].Dump(); }}voidComputeW(){ u_int32_t i, j; u_int32_t *W = D2; memset(W, '\xff', sizeof(int) * NODES * NODES); for(i = 1; i < NODES; i++) { for(j = i; j < NODES; j++) { Neighbor *m = &NodeList[i].neighbor[j]; if(i == j) W[i*NODES + j] = W[j*NODES + i] = 0; else W[i*NODES + j] = W[j*NODES + i] = m->reachable ? 1 : INFINITY; } }}voidfloyd_warshall(){ u_int32_t i, j, k; ComputeW(); // the connectivity matrix for(i = 1; i < NODES; i++) { for(j = 1; j < NODES; j++) { for(k = 1; k < NODES; k++) { D2[j*NODES + k] = min(D2[j*NODES + k], D2[j*NODES + i] + D2[i*NODES + k]); } } }#ifdef SANITY_CHECKS for(i = 1; i < NODES; i++) for(j = 1; j < NODES; j++) { assert(D2[i*NODES + j] == D2[j*NODES + i]); assert(D2[i*NODES + j] <= INFINITY); }#endif}/* * Write the actual GOD entries to a TCL script. */voidshow_diffs(){ u_int32_t i, j; for(i = 1; i < NODES; i++) { for(j = i + 1; j < NODES; j++) { if(D1[i*NODES + j] != D2[i*NODES + j]) { if(D2[i*NODES + j] == INFINITY) DestUnreachableCount++; if(TIME > 0.0) { RouteChangeCount++; NodeList[i].route_changes++; NodeList[j].route_changes++; } if(TIME == 0.0) { fprintf(out_file, GOD_FORMAT2, i, j, D2[i*NODES + j]);#ifdef SHOW_SYMMETRIC_PAIRS fprintf(out_file, GOD_FORMAT2, j, i, D2[j*NODES + i]);#endif } else { fprintf(out_file, GOD_FORMAT, TIME, i, j, D2[i*NODES + j]);#ifdef SHOW_SYMMETRIC_PAIRS fprintf(out_file, GOD_FORMAT, TIME, j, i, D2[j*NODES + i]);#endif } } } } memcpy(D1, D2, sizeof(int) * NODES * NODES);}voidshow_routes(){ u_int32_t i, j; fprintf(stdout, "#\n# TIME: %.12f\n#\n", TIME); for(i = 1; i < NODES; i++) { fprintf(stdout, "# %2d) ", i); for(j = 1; j < NODES; j++) fprintf(stdout, "%3d ", D2[i*NODES + j] & 0xff); fprintf(stdout, "\n"); } fprintf(stdout, "#\n");}voidshow_counters(){ u_int32_t i; fprintf(out_file, "#\n# Destination Unreachables: %d\n#\n", DestUnreachableCount); fprintf(out_file, "# Route Changes: %d\n#\n", RouteChangeCount); fprintf(out_file, "# Link Changes: %d\n#\n", LinkChangeCount); fprintf(out_file, "# Node | Route Changes | Link Changes\n"); for(i = 1; i < NODES; i++) fprintf(out_file, "# %4d | %4d | %4d\n", i, NodeList[i].route_changes, NodeList[i].link_changes); fprintf(out_file, "#\n");}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -