📄 nam.txt
字号:
User Commands NAM(1)NAME nam - VINT/LBL Network AnimatorSYNOPSIS nam [ -g geometry ] [ -t graphInput ][ -i interval ] [ -P peerName ] [ -N appName ] [ -c cacheSize ] [ -f configfile ] [ -S ] tracefileDESCRIPTION Nam is a Tcl/TK based animation tool for viewing network simulation traces and real world packet trace data. The first step to use nam is to produce the trace file. The trace file should contain topology information, e.g., nodes, links, as well as packet traces. The detailed format is described in the TRACE FILE section. Usually, the trace file is generated by ns(1). During an ns simulation, user can produce topology configurations, layout information, and packet traces using tracing events in ns. Refer to ns(1) for detailed information. When the trace file is generated, it is ready to be animated by nam. Upon startup, nam will read the trace file, create topology, pop up a window, do layout if necessary, then pause at the time of the first packet in the trace file. Through its user interface, nam provides control over many aspects of animation. These functionalities will be described in detail in the USER INTERFACE section. This version of nam is highly experimental - there will be bugs!. Please mail ns-developers@mash.cs.berkeley.edu if you encounter any bugs, or with suggestions for desired func- tionality.OPTIONS -g Specify geometry of the window upon startup. The format is described in X(1) -t [Information incomplete] Instruct nam to use tkgraph, and specify input file nam for tkgraph. -i [Information for this option may not be accurate] Specify rate (real) milliseconds as the screen update rate. The default rate is 50ms (i.e., 20 frames per second). Note that the X server may not be able to keep up with this rate, in which case the animation will run as fast as the X server allows it to (at 100% cpu utilization). -N Specify the application name of this nam instance. This application name may later be used in peer synchroniza- tion.SunOS 5.6 Last change: 04 Nov 1997 1User Commands NAM(1) -P Specify the application name of the peer nam instance whose execution will be synchronized with the execution of this nam instance. Refer to the above option (-N) as how to specify application names. General usage is: (1) starting the first nam instance (slave) by: nam -N <name #1> <trace file name #1> Then start the second nam instance (which will be the master): nam -N <name #2> <trace file name #2> Then every animation control (play, stop, backward, but exclude other inspection and interactive operations such as monitoring) will be synchronized between the two instances. Please note that because this mechanism uses Tcl's send command, it requires that your X server used xauth as authentication. Specifically, you should add option `- auth <authorization file name>' when you starts your X server. Without this option, X will use xhost as authentication, which is too weak and considered insecure. Refer to man page of Xsecurity, xauth and Xserver for details, and the available authentication protocols. -c [Information incomplete] The maximum size of the cache used to store 'active' objects when doing backward ani- mation. -f Name of the initialization files to be loaded during startup. In this file, user can define functions which will be called in the trace file. An example for this is the 'link-up' and 'link-down' events of dynamic links in ns. (Refer to $ns rtmodel for detail, and tcl/ex/simple-dyn.tcl in your ns directory for exam- ple). Example initialization files can be found at ex/sample.nam.tcl and ex/dynamic-nam.conf. -S Enable synchronous X behavior so it is easier for graphics debugging. For UNIX system running X only. tracefile is the name of the file containing the trace data to be animated (format described in TRACE FILE section below). If tracefile cannot be read, nam will try to open tracefile.nam.OBJECTS IN NAM nam does animation using the following building blocks: node, link, queue, packet, agent, monitor. They are defined below: node Nodes are created from 'n' trace event in trace file. It represents a source/host/router, etc. nam willSunOS 5.6 Last change: 04 Nov 1997 2User Commands NAM(1) terminate if there are duplicate definition for the same node. Node may have many shapes, (circle, square, and hexagon), but once created it cannot change its shape. Node may also have many colors, it can change its color during animation. Refer to ns(1) for related tracing events. link Links are created between nodes to form a network topology. nam links are internally simplex, but it is invisible to the users. The trace event 'l' creates two simplex links and other necessary setups, hence it looks to users identical to a duplex link. Link may have many colors, it can change its color during anima- tion. Refer to ns(1) for related tracing events. queue Queue needs to be constructed in nam between two nodes. Unlike link, nam queue is associated to a simplex link. The trace event 'q' only creates a queue for a simplex link. In nam, queues are visualized as stacked packets. Packets are stacked along a line, the angle between the line and the horizontal line can be specified in the trace event 'q'. packet Packet is visualized as a block with an arrow. The direction of the arrow shows the flow direction of the packet. Queued packets are shown as little squares. A packet may be dropped from a queue or a link. Dropped packets are shown as rotating squares, and disappear at the end of the screen. Dropped packets are not visible during backward animation. agent Agents are used to separate protocol states from nodes. They are always associated with nodes. An agent has a name, which is a unique identifier of th agent. It is shown as a square with its name inside, and a line link the square to its associated node.AUTOMATIC LAYOUT In nam, a topology is specified by alternating node objects with edge objects. But to display the topology in a comprehensible way, a layout mechanism is needed. Currently nam provides two layout methods. First, user may specify edges' orientations. An edge orien- tation is the angle between the edge and the horizontal line, in the interval [0, 2*pi). During layout, nam will honor the given edge orientations. Generally, it will first choose a reference node, then place other nodes using edge orientation and edge length, which is determined by linkSunOS 5.6 Last change: 04 Nov 1997 3User Commands NAM(1) delay. This works well for small and manually generated topologies. Second, when we are dealing with randomly generated topolo- gies, be it small or large, we may want to do layout automatically. An automatic graph layout algorithm ([1] [2]) is adapted and implemented. The basic idea of the algorithm is to model the graph as balls (nodes) connected by springs (edges). Balls will repulse each other, while springs pull them together. This system will (hopefully) converge after some iterations. In practice, after a small number of itera- tions (tens or hundreds), most graphs will converge to a visually comprehensible structure. There are 3 parameters to tune the automatic layout process: Ca Attractive force constant, which controls springs's force between balls. Default value is 0.15 Cr Repulsive force constant, which controls the repulsive force between balls. Default value is 0.15 Number of iterations Self explained. Default value is 10. For small topologies with tens of nodes, using the default parameters (perhaps with 20 to 30 more itera- tions) will suffice to produce a nice layout. But for larger topology, careful parameter tuning is necessary. Following is a empirical method to layout a 100 node random transit stub topology generated by Georgia Tech's ITM internet topology modeler. First, set Ca and Cr to 0.2, do about 30 iterations, then set Cr to 1.0, Ca to about 0.01, then do about 10 iterations, then set Ca to 0.5, Cr to 1.0, do about 6 iterations.THE USER INTERFACE The top of the nam nam window is a menu bar. Two pulldown menus are on the left of the menu bar. The 'File' menu currently only contains a 'Quit' button. It has a 'Open...' button as well, but that is not implemented yet. The 'View' menu has 4 buttons: - New view button: Creates a new view of the same anima- tion. User can scroll and zoom on the new view. All views will be animated synchronously. - Show monitors checkbox: If checked, will show a pane at the lower half of window, where monitors will be displayed. - Show autolayout checkbox: If checked, will show a paneSunOS 5.6 Last change: 04 Nov 1997 4User Commands NAM(1) at the lower half of window, which contains input boxes and a button for automatic layout adjusts. This box may not always be enabled. When a trace file has its own layout specifications, this box will be disabled. If and only if the trace file does not have complete layout specification (i.e., each link has orientation specified in the traces), will this box be enabled. - Show annotation checkbox: If checked, will show a list- box at the lower half of window, which will be used to list annotations in the ascending order of time. The 'Help' menu is on the right side of the menu bar. It has two buttons. Clicking the 'Help' button will pop up a new window showing information on nam usage. Clicking the 'About' button will pop up a new window showing history and status of nam. Acceleration Keys ALT+'f' will pull down the 'File' menu. ALT+'v' will pull down the 'Open...' menu. ESC will abort a menu selection in progress. Below the menu bar, there is a control bar containing 6 buttons, a label, and a small scrollbar (scale). They can be clicked in any order. We will explain them from left to right. Button 1 (<<) Rewind. When clicked, animation time will go back at the rate of 25 times the current screen update rate. Button 2 (<) Backward play. When clicked, animation will be played backward in time. Button 3 (square) Stop. When clicked, animation will pause. Button 4 (>) Forward play. When clicked, animation will be played in time ascending order. Button 5 (>>) Fast Forward. When clicked, animation time will go for- ward at the rate of 25 times the current screen update rate. Button 6 (Chevron logo) Quit. Time labelSunOS 5.6 Last change: 04 Nov 1997 5User Commands NAM(1) Show the current animation time (i.e., simulation time as in the trace file). Rate slider Controls the screen update rate (animation granular- ity). The current rate is displayed in the label above the slider. Below the first control bar, there is Main Display, which contains a tool bar and a main view pane with two panning scroll bars. All new views created by menu button 'File/new view' will have these three components. The tool bar contains two zoom buttons. The button with an up arrow zooms in, the button with a down arrrow zooms out. The two scroll bars are used to pan the main animation view. Clicking the left button on any of the objects in the main view pane will pop up a information window at the clicking point. For packet and agent objects, there is a 'monitor' button in the popup window. Clicking that button will bring out the monitor pane (if it is not there), and add a monitor to the object. For link object, there will be a 'Graph' but- ton. Clink that button will bring out another popup window, where user can select drawing bandwidth utilization graph or link loss graph of one of the two simplex links of the duplex link clicked on. These functionalities are also available in the views created by 'File/new view'. NOTE: These functionalities are HIGHLY EXPERIMENTAL AND UNSTABLE
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -