⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cca.m

📁 一个很好的Matlab编制的数据降维处理软件
💻 M
字号:
function [Z, ccaEigen, ccaDetails] = cca(X, Y, EDGES, OPTS)%% Function [Z, CCAEIGEN, CCADETAILS] = CCA(X, Y, EDGES, OPTS) computes a low% dimensional embedding Z in R^d that maximally preserves angles among  input % data X that lives in R^D, with the algorithm Conformal Component Analysis.%% The embedding Z is constrained to be Z = L*Y where Y is a partial basis that % spans the space of R^d. Such Y can be computed from graph Laplacian (such as % the outputs of Laplacian eigenmap and Locally Linear Embedding, ie, LLE). % The parameterization matrix L is found by this function as to maximally% prserve angles between edges coded in the sparse matrix EDGES.%% A basic usage of this function is given below:%% Inputs:%   X: input data stored in matrix  (D x N) where D is the dimensionality%%   Y: partial basis stored in matrix (d x N)%%   EDGES: a sparse matrix of (N x N). In each column i, the row indices j to%   nonzero entrices define data points that are in the nearest neighbors of%   data point i.%%   OPTS:%     OPTS.method: 'CCA' %% Outputs:%   Z: low dimensional embedding (d X N)%   CCAEIGN: eigenspectra of the matrix P = L'*L. If P is low-rank (say d' < d),%   then Z can be cutoff at d' dimension as dimensionality reduced further.%% The CCA() function is fairly versatile. For more details, consult the file% README.%%  by feisha@cs.berkeley.edu Aug 18, 2006%  Feel free to use it for educational and research purpose.% This file is part of the Matlab Toolbox for Dimensionality Reduction v0.4b.% The toolbox can be obtained from http://www.cs.unimaas.nl/l.vandermaaten% You are free to use, change, or redistribute this code in any way you% want for non-commercial purposes. However, it is appreciated if you % maintain the name of the original author.%% (C) Laurens van der Maaten% Maastricht University, 2007    % sanity check    if nargin ~= 4        error('Incorrect number of inputs supplied to cca().');    end    N = size(X,2);    if (N~=size(Y,2)) || (N ~= size(EDGES,1)) || (N~=size(EDGES,2))        disp('Unmatched matrix dimensions in cca().');        fprintf('# of data points: %d\n', N);        fprintf('# of data points in Y: %d\n', size(Y,2));        fprintf('Size of the sparse matrix for edges: %d x %d\n', size(EDGES,1), size(EDGES,2));        error('All above 4 numbers should be the same.');    end    % check necessary programs    if exist('mexCCACollectData') ~= 3        error('Missing mexCCACollectData mex file on the path');    end    if exist('csdp') ~= 2        error('You will need CSDP solver to run cca(). Please make sure csdp.m is in your path');    end    % check options    OPTS = check_opt(OPTS);    D = size(X, 1);     d = size(Y, 1);    %disp('Step I.  collect data needed for SDP formulation');    [tnn, vidx] = triangNN(EDGES, OPTS.CCA);    [erow, ecol, evalue] = sparse_nn(tnn);    irow = int32(erow); icol = int32(ecol);    ividx = int32(vidx); ivalue = int32(evalue);    [A,B, g] = mexCCACollectData(X,Y, irow, icol, int32(OPTS.relative), ivalue, ividx );    clear erow ecol irow icol tnn ividx ivalue evalue vidx;    lst = find(g~=0);    g = g(lst); B = B(:, lst);    if OPTS.CCA == 1        BG = B*spdiags(1./sqrt(g),0, length(g),length(g));        Q = A - BG*BG';        BIAS = OPTS.regularizer*reshape(eye(d), d^2,1);    else        Q = A; BIAS = 2*sum(B,2)+OPTS.regularizer*reshape(eye(d), d^2,1);    end    [V, E] = eig(Q+eye(size(Q))); % adding an identity matrix to Q for numerical    E = E-eye(size(Q));           % stability    E(E<0) = 0;    if ~isreal(diag(E))        warning('\tThe quadratic matrix is not positive definite..forced to be positive definite...\n');        E=real(E);        V = real(V);        S = sqrt(E)*V';    else        S = sqrt(E)*V';    end    % Formulate the SDP problem    [AA, bb, cc] = formulateSDP(S, d, BIAS, (OPTS.CCA==1));    sizeSDP = d^2+1 + d + 2*(OPTS.CCA==1);    csdppars.s = sizeSDP;    csdpopts.printlevel = 0;        % Solve it using CSDP    [xx, yy, zz, info] = csdp(AA, bb, cc, csdppars,csdpopts);    ccaDetails.sdpflag = info;        % The negate of yy is our solution    yy = -yy;    idx = 0;    P = zeros(d);    for col=1:d        for row = col:d            idx=idx+1;            P(row, col) = yy(idx);        end    end        % Convert P to a positive definite matrix    P = P + P' - diag(diag(P));    % Transform the original projection to the new projection    [V, E] = eig(P);    E(E < 0) = 0;    L = diag(sqrt(diag(E))) * V';    newY = L * Y;    % Eigenvalue of the new projection, doing PCA using covariance matrix    [newV, newE] = eig(newY * newY');    newE = diag(newE);    [dummy, idx] = sort(newE);    newE = newE(idx(end:-1:1));    newY = newV' * newY;    Z = newY(idx(end:-1:1),:);    ccaEigen = newE;    ccaDetails.cost = P(:)'*Q*P(:) - BIAS'*P(:) + sum(g(:))*(OPTS.MVU==1);    if OPTS.CCA == 1        ccaDetails.c = spdiags(1./sqrt(g),0, length(g),length(g))*B'*P(:);    else        ccaDetails.c = [];    end    ccaDetails.P = P;    ccaDetails.opts = OPTS;%%%%%%%%%%%%%%%%%%%% FOLLOWING IS SUPPORTING MATLAB FUNCTIONSfunction [A, b, c] = formulateSDP(S, D, bb, TRACE)    [F0, FI, c] = localformulateSDP(S, D, bb, TRACE);    [A, b, c] = sdpToSeDuMi(F0, FI, c);    function [F0, FI, c] = localformulateSDP(S, D, b, TRACE)% formulate SDP problem% each FI that corresponds to the LMI for the quadratic cost function has% precisely 2*D^2 nonzero elements. But we need only D^2 storage for% indexing these elements since the FI are symmetric        tempFidx = zeros(D^2, 3);        dimF = (D^2+1) + D + 2*TRACE;        idx= 0;        tracearray = ones(TRACE,1);        for col=1:D            for row=col:D                idx = idx+1;                lindx1 = sub2ind([D D], row, col);                lindx2 = sub2ind([D D], col, row);                tempFidx(:,1) = [1:D^2]';                tempFidx(:,2) = D^2+1;                if col==row                    tempFidx(:,3) = S(:, lindx1) ;                    FI{idx} = sparse([tempFidx(:,1); ...  % for cost function                                        tempFidx(:,2); ... % symmetric                                        row+D^2+1; ... % for P being p.s.d                                        tracearray*(D^2+1+D+1); % for trace                                        tracearray*(D^2+1+D+2); % for negate trace                                    ], ...                                    [tempFidx(:,2); ...  % for cost function                                        tempFidx(:,1); ... % symmetric                                        row+D^2+1; ... % for P being p.s.d                                        tracearray*(D^2+1+D+1); % for trace                                        tracearray*(D^2+1+D+2); % for negate trace                                    ],...                                    [tempFidx(:,3); ... % for cost function                                        tempFidx(:,3); ... % symmetric                                        1;                  % for P being p.s.d                                        tracearray*1; % for trace                                        tracearray*(-1); % for negate trace                                                                   ], dimF, dimF);                else                    tempFidx(:,3) = S(:, lindx1) + S(:, lindx2);                    FI{idx} = sparse([tempFidx(:,1); ...  % for cost function                                        tempFidx(:,2); ... % symmetric                                        row+D^2+1; ... % for P being p.s.d                                        col+D^2+1; ... % symmetric                                    ], ...                                    [tempFidx(:,2); ...  % for cost function                                        tempFidx(:,1); ... % symmetric                                        col+D^2+1; ... % for P being p.s.d                                        row+D^2+1; ... % being symmetric                                    ],...                                    [tempFidx(:,3); ... % for cost function                                        tempFidx(:,3); ... % symmetric                                        1;                  % for P being p.s.d                                        1;                  % symmetric                                    ], dimF, dimF);                end            end        end        idx=idx+1;        % for the F matrix corresponding to t        FI{idx} = sparse(D^2+1, D^2+1, 1, dimF, dimF);        % now for F0        if TRACE==1            F0 = sparse( [[1:D^2] dimF-1 dimF], [[1:D^2] dimF-1 dimF], [ones(1, D^2) -1 1], dimF, dimF);        else            F0 = sparse( [[1:D^2]], [[1:D^2]], [ones(1, D^2)], dimF, dimF);        end        % now for c        b = reshape(-b, D, D);        b = b*2 - diag(diag(b));         c = zeros(idx-1,1);        kdx=0;        %keyboard;        for col=1:D            for row=col:D              kdx = kdx+1;              c(kdx) = b(row, col);            end        end        %keyboard;        c = [c; 1]; % remember: we use only half of P    return;function [A, b, c] = sdpToSeDuMi(F0, FI, cc)% convert the canonical SDP dual formulation:% (see  Vandenberche and Boyd 1996, SIAM Review)%  max -Tr(F0 Z)% s.t. Tr(Fi Z) = cci and Z is positive definite%% in which cc = (cc1, cc2, cc3,..) and FI = {F1, F2, F3,...}% % to SeDuMi format (formulated as vector decision variables ):% min c'x% s.t. Ax = b and x is positive definite (x is a vector, so SeDuMi% really means that vec2mat(x) is positive definite)%% by feisha@cis.upenn.edu, June, 10, 2004        if nargin < 3            error('Cannot convert SDP formulation to SeDuMi formulation in sdpToSeDumi!');        end        [m, n] = size(F0);        if m ~= n            error('F0 matrix must be squared matrix in sdpToSeDumi(F0, FI, b)');        end        p = length(cc);        if p ~= length(FI)            error('FI matrix cellarray must have the same length as b in sdpToSeDumi(F0,FI,b)');        end        % should check every element in the cell array FI...later..        % x = reshape(Z, n*n, 1);  % optimization variables from matrix to vector        % converting objective function of the canonical SDP        c = reshape(F0', n*n,1);        % converting equality constraints of the canonical SDP        zz= 0;        for idx=1:length(FI)            zz= zz + nnz(FI{idx});        end        A = spalloc( n*n, p, zz);        for idx = 1:p            temp = reshape(FI{idx}, n*n,1);            lst = find(temp~=0);            A(lst, idx) = temp(lst);        end        % The SeDuMi solver actually expects the transpose of A as in following        % dual problem        % max b'y        % s.t. c - A'y is positive definite        % Therefore, we transpose A        % A = A';        % b doesn't need to be changed        b = cc;    return;    % Check OPTS that is passed into    function OPTS = check_opt(OPTS)        if isfield(OPTS,'method') == 0              OPTS.method = 'cca';            disp('Options does''t have method field, so running CCA');        end        if strncmpi(OPTS.method, 'MVU',3)==1            OPTS.CCA = 0; OPTS.MVU = 1;        else            OPTS.CCA = 1; OPTS.MVU = 0;        end        if isfield(OPTS, 'relative')==0            OPTS.relative = 0;        end        if OPTS.CCA==1 && OPTS.relative ==1            disp('Running CCA, so the .relative flag set to 0');            OPTS.relative = 0;        end        if isfield(OPTS, 'regularizer')==0            OPTS.regularizer = 0;        end    return    function [tnn vidx]= triangNN(snn, TRI)    % function [TNN VIDX]= triangNN(SNN) triangulates a sparse graph coded by spare matrix    % SNN. TNN records the original edges in SNN as well as those that are    % triangulated. Each edge is associated with a scaling factor that is specific    % to a vertex. And VIDX records the id of the vertex.    %    % by feisha@cs.berkeley.edu  Aug. 15, 2006.        N = size(snn,1);        %fprintf('The graph has %d vertices\n', N);        % figure out maximum degree a vertex has        connectivs = sum(snn,1);        maxDegree =  max(connectivs);        tnn = spalloc(N, N, round(maxDegree*N)); % prealloc estimated storage for speedup         % triangulation        for idx=1:N            lst = find(snn(:, idx)>0);            for jdx=1:length(lst)                col = min (idx, lst(jdx));                row = max(idx, lst(jdx));                tnn(row, col) = tnn(row, col)+1;                if TRI == 1                    for kdx = jdx+1:length(lst)                        col = min(lst(jdx), lst(kdx));                        row = max(lst(jdx), lst(kdx));                        tnn(row, col) = tnn(row, col)+1;                    end                end            end        end        numVertexIdx = full(sum(tnn(:)));        %fprintf('%d vertex entries are needed\n', numVertexIdx);        rowIdx = zeros(numVertexIdx,1);        colIdx = zeros(numVertexIdx,1);        vidx = zeros(numVertexIdx,1);        whichEdge = 0;        for idx=1:N            lst = find(snn(:, idx)>0);            for jdx=1:length(lst)                col = min(lst(jdx), idx);                row  = max(lst(jdx), idx);                whichEdge = whichEdge+1;                rowIdx(whichEdge) = row;                colIdx(whichEdge) = col;                vidx(whichEdge)  = idx;                if TRI==1                    for kdx = jdx+1:length(lst)                        col = min(lst(jdx), lst(kdx));                        row = max(lst(jdx), lst(kdx));                        whichEdge = whichEdge+1;                        rowIdx(whichEdge) = row;                        colIdx(whichEdge) = col;                        vidx(whichEdge)  = idx;                    end                end            end        end        linearIdx  = sub2ind([N N],rowIdx, colIdx);        [sa, sIdx] = sort(linearIdx);        vidx = vidx(sIdx);    return    % turn sparse graph snn into row and col indices    function [edgesrow, edgescol, value] = sparse_nn(snn)        N = size(snn,1);        edgescol = zeros(N+1,1);        nnzer = nnz(snn);        edgesrow = zeros(nnzer,1);        value = zeros(nnzer,1);        edgescol(1) = 0;        for jdx=1:N            lst = find(snn(:, jdx)>0);            %lst = lst(find(lst>jdx));            edgescol(jdx+1) = edgescol(jdx)+length(lst);            edgesrow(edgescol(jdx)+1:edgescol(jdx+1)) = lst-1;            value(edgescol(jdx)+1:edgescol(jdx+1)) = snn(lst, jdx);        end    return

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -