⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 isomap.m

📁 一个很好的Matlab编制的数据降维处理软件
💻 M
字号:
function [mappedX, mapping] = isomap(X, no_dims, k); %ISOMAP Runs the Isomap algorithm%%   [mappedX, mapping] = isomap(X, no_dims, k); %% The functions runs the Isomap algorithm on dataset X to reduce the% dimensionality of the dataset to no_dims. The number of neighbors used in% the compuations is set by k (default = 12). This implementation does not% use the Landmark-Isomap algorithm.%% If the neighborhood graph that is constructed is not completely% connected, only the largest connected component is embedded. The indices% of this component are returned in mapping.conn_comp.%%% This file is part of the Matlab Toolbox for Dimensionality Reduction v0.4b.% The toolbox can be obtained from http://www.cs.unimaas.nl/l.vandermaaten% You are free to use, change, or redistribute this code in any way you% want for non-commercial purposes. However, it is appreciated if you % maintain the name of the original author.%% (C) Laurens van der Maaten% Maastricht University, 2007    if ~exist('no_dims')        no_dims = 2;    end    if ~exist('k')        k = 12;    end    % Construct neighborhood graph    disp('Constructing neighborhood graph...');     D = real(find_nn(X, k));    mapping.D = D;    % Select largest connected component    blocks = components(D)';    count = zeros(1, max(blocks));    for i=1:max(blocks)        count(i) = length(find(blocks == i));    end    [count, block_no] = max(count);    conn_comp = find(blocks == block_no);    D = D(conn_comp,:);    D = D(:,conn_comp);    n = size(D, 1);    % Compute shortest paths    disp('Computing shortest paths...');    D = dijkstra(D, [1:n]);        % Performing MDS using eigenvector implementation    disp('Constructing low-dimensional embedding...');    M = -.5 * (D .^ 2 - sum(D .^ 2)' * ones(1, n) / n - ones(n, 1) * sum(D .^ 2) / n + sum(sum(D .^ 2)) / (n ^ 2));	M(isnan(M)) = 0;	M(isinf(M)) = 0;    [vec, val] = eig(M);	if size(vec, 2) < no_dims		no_dims = size(vec, 2);		warning(['Target dimensionality reduced to ' num2str(no_dims) '...']);	end	    % Computing final embedding    h = real(diag(val));     [foo, sorth] = sort(h, 'descend');      val = real(diag(val(sorth, sorth)));     vec = vec(:,sorth);    mappedX = real(vec(:,1:no_dims) .* (ones(n, 1) * sqrt(val(1:no_dims))'));         % Store data for out-of-sample extension    mapping.conn_comp = conn_comp;    mapping.k = k;    mapping.X = X(conn_comp,:);    mapping.DD = D;    mapping.vec = vec;    mapping.val = val;    mapping.no_dims = no_dims;    

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -