📄 c code.txt
字号:
/* Code to implement the improved SAFER-SK form of the SAFER cipher,
originally published as "SAFER K-64: A Byte-Oriented Block-Ciphering
Algorithm", James L. Massey, "Fast Software Encryption", Lecture Notes in
Computer Science No. 809, Springer-Verlag 1994, p.1. This code implements
the 128-bit key extension designed by the Special Projects Team of the
Ministry of Home Affairs, Singapore and published as "SAFER K-64: One
Year Later", James L.Massey, presented at the K. U. Leuven Workshop on
Algorithms, Leuven, Belgium, 14-16 December, 1994, to appear in "Fast
Software Encryption II", Lecture Notes in Computer Science,
Springer-Verlag 1995, along with Lars Knudsen's strengthened key schedule,
presented in "A Key-Schedule Weakness in SAFER K-64," Lars Knudsen,
presented at Crypto '95 in Santa Barbara, California.
All parts of the SAFER-SK algorithm are non-proprietary and freely
available for anyone to use as they see fit */
#include <string.h>
#ifdef _MSC_VER
#include "../crypt.h"
#include "safer.h"
#else
#include "crypt.h"
#include "safer/safer.h"
#endif /* _MSC_VER */
/* The size of each half key used in the key schedule */
#define SAFER_KEYHALF_SIZE ( SAFER_KEYSIZE / 2 )
/* The size of each half key plus the parity byte used in the key schedule */
#define SAFER_KEYHALF_P_SIZE ( SAFER_KEYHALF_SIZE + 1 )
/* Define for byte rotates (C isn't quite a high-level assembly language) */
#define ROL(x,n) ( ( ( x << n ) | ( x >> ( 8 - n ) ) ) & 0xFF )
/* Exponents and logs, evaluated via the pre-calculated lookup tables */
#define EXP(x) expTable[ x ]
#define LOG(x) logTable[ x ]
/* The two-point Pseudo-Hadamard Transform
b1 = 2a1 + a2
b2 = a1 + a2
and inverse two-point Pseudo-Hadamard Transform
a1 = b1 - b2
a2 = -b1 + 2b2
which are used to create a three-dimensional PHT (ie independant
two-point PHT's in each of three dimensions, which is why there are
2^3 = 8 bytes in the input and output of the PHT) through a decimation-
by-two/fanning-out-by-two network. The PHT provides guaranteed complete
diffusion within one linear layer */
#define PHT(x,y) { y += x; x += y; }
#define IPHT(x,y) { x -= y; y -= x; }
/* The lookup table for logs and exponents. These contain the powers of the
primitive element 45 of GF( 257 ) (ie values of 45^n mod 257) in
"expTable" with the corresponding logs base 45 stored in "logTable".
They may be calculated as follows:
exponent = 1;
for( i = 0; i < 256; i++ )
{
int exp = exponent & 0xFF;
expTable[ i ] = exp;
logTable[ exp ] = i;
exponent = ( exponent * 45 ) % 257;
} */
static BYTE expTable[] = {
0x01, 0x2D, 0xE2, 0x93, 0xBE, 0x45, 0x15, 0xAE,
0x78, 0x03, 0x87, 0xA4, 0xB8, 0x38, 0xCF, 0x3F,
0x08, 0x67, 0x09, 0x94, 0xEB, 0x26, 0xA8, 0x6B,
0xBD, 0x18, 0x34, 0x1B, 0xBB, 0xBF, 0x72, 0xF7,
0x40, 0x35, 0x48, 0x9C, 0x51, 0x2F, 0x3B, 0x55,
0xE3, 0xC0, 0x9F, 0xD8, 0xD3, 0xF3, 0x8D, 0xB1,
0xFF, 0xA7, 0x3E, 0xDC, 0x86, 0x77, 0xD7, 0xA6,
0x11, 0xFB, 0xF4, 0xBA, 0x92, 0x91, 0x64, 0x83,
0xF1, 0x33, 0xEF, 0xDA, 0x2C, 0xB5, 0xB2, 0x2B,
0x88, 0xD1, 0x99, 0xCB, 0x8C, 0x84, 0x1D, 0x14,
0x81, 0x97, 0x71, 0xCA, 0x5F, 0xA3, 0x8B, 0x57,
0x3C, 0x82, 0xC4, 0x52, 0x5C, 0x1C, 0xE8, 0xA0,
0x04, 0xB4, 0x85, 0x4A, 0xF6, 0x13, 0x54, 0xB6,
0xDF, 0x0C, 0x1A, 0x8E, 0xDE, 0xE0, 0x39, 0xFC,
0x20, 0x9B, 0x24, 0x4E, 0xA9, 0x98, 0x9E, 0xAB,
0xF2, 0x60, 0xD0, 0x6C, 0xEA, 0xFA, 0xC7, 0xD9,
0x00, 0xD4, 0x1F, 0x6E, 0x43, 0xBC, 0xEC, 0x53,
0x89, 0xFE, 0x7A, 0x5D, 0x49, 0xC9, 0x32, 0xC2,
0xF9, 0x9A, 0xF8, 0x6D, 0x16, 0xDB, 0x59, 0x96,
0x44, 0xE9, 0xCD, 0xE6, 0x46, 0x42, 0x8F, 0x0A,
0xC1, 0xCC, 0xB9, 0x65, 0xB0, 0xD2, 0xC6, 0xAC,
0x1E, 0x41, 0x62, 0x29, 0x2E, 0x0E, 0x74, 0x50,
0x02, 0x5A, 0xC3, 0x25, 0x7B, 0x8A, 0x2A, 0x5B,
0xF0, 0x06, 0x0D, 0x47, 0x6F, 0x70, 0x9D, 0x7E,
0x10, 0xCE, 0x12, 0x27, 0xD5, 0x4C, 0x4F, 0xD6,
0x79, 0x30, 0x68, 0x36, 0x75, 0x7D, 0xE4, 0xED,
0x80, 0x6A, 0x90, 0x37, 0xA2, 0x5E, 0x76, 0xAA,
0xC5, 0x7F, 0x3D, 0xAF, 0xA5, 0xE5, 0x19, 0x61,
0xFD, 0x4D, 0x7C, 0xB7, 0x0B, 0xEE, 0xAD, 0x4B,
0x22, 0xF5, 0xE7, 0x73, 0x23, 0x21, 0xC8, 0x05,
0xE1, 0x66, 0xDD, 0xB3, 0x58, 0x69, 0x63, 0x56,
0x0F, 0xA1, 0x31, 0x95, 0x17, 0x07, 0x3A, 0x28
};
static BYTE logTable[] = {
0x80, 0x00, 0xB0, 0x09, 0x60, 0xEF, 0xB9, 0xFD,
0x10, 0x12, 0x9F, 0xE4, 0x69, 0xBA, 0xAD, 0xF8,
0xC0, 0x38, 0xC2, 0x65, 0x4F, 0x06, 0x94, 0xFC,
0x19, 0xDE, 0x6A, 0x1B, 0x5D, 0x4E, 0xA8, 0x82,
0x70, 0xED, 0xE8, 0xEC, 0x72, 0xB3, 0x15, 0xC3,
0xFF, 0xAB, 0xB6, 0x47, 0x44, 0x01, 0xAC, 0x25,
0xC9, 0xFA, 0x8E, 0x41, 0x1A, 0x21, 0xCB, 0xD3,
0x0D, 0x6E, 0xFE, 0x26, 0x58, 0xDA, 0x32, 0x0F,
0x20, 0xA9, 0x9D, 0x84, 0x98, 0x05, 0x9C, 0xBB,
0x22, 0x8C, 0x63, 0xE7, 0xC5, 0xE1, 0x73, 0xC6,
0xAF, 0x24, 0x5B, 0x87, 0x66, 0x27, 0xF7, 0x57,
0xF4, 0x96, 0xB1, 0xB7, 0x5C, 0x8B, 0xD5, 0x54,
0x79, 0xDF, 0xAA, 0xF6, 0x3E, 0xA3, 0xF1, 0x11,
0xCA, 0xF5, 0xD1, 0x17, 0x7B, 0x93, 0x83, 0xBC,
0xBD, 0x52, 0x1E, 0xEB, 0xAE, 0xCC, 0xD6, 0x35,
0x08, 0xC8, 0x8A, 0xB4, 0xE2, 0xCD, 0xBF, 0xD9,
0xD0, 0x50, 0x59, 0x3F, 0x4D, 0x62, 0x34, 0x0A,
0x48, 0x88, 0xB5, 0x56, 0x4C, 0x2E, 0x6B, 0x9E,
0xD2, 0x3D, 0x3C, 0x03, 0x13, 0xFB, 0x97, 0x51,
0x75, 0x4A, 0x91, 0x71, 0x23, 0xBE, 0x76, 0x2A,
0x5F, 0xF9, 0xD4, 0x55, 0x0B, 0xDC, 0x37, 0x31,
0x16, 0x74, 0xD7, 0x77, 0xA7, 0xE6, 0x07, 0xDB,
0xA4, 0x2F, 0x46, 0xF3, 0x61, 0x45, 0x67, 0xE3,
0x0C, 0xA2, 0x3B, 0x1C, 0x85, 0x18, 0x04, 0x1D,
0x29, 0xA0, 0x8F, 0xB2, 0x5A, 0xD8, 0xA6, 0x7E,
0xEE, 0x8D, 0x53, 0x4B, 0xA1, 0x9A, 0xC1, 0x0E,
0x7A, 0x49, 0xA5, 0x2C, 0x81, 0xC4, 0xC7, 0x36,
0x2B, 0x7F, 0x43, 0x95, 0x33, 0xF2, 0x6C, 0x68,
0x6D, 0xF0, 0x02, 0x28, 0xCE, 0xDD, 0x9B, 0xEA,
0x5E, 0x99, 0x7C, 0x14, 0x86, 0xCF, 0xE5, 0x42,
0xB8, 0x40, 0x78, 0x2D, 0x3A, 0xE9, 0x64, 0x1F,
0x92, 0x90, 0x7D, 0x39, 0x6F, 0xE0, 0x89, 0x30
};
/* Perform a SAFER key schedule */
void saferExpandKey( BYTE *key, BYTE *userKey, int noRounds, int useSaferSK )
{
int round, i;
BYTE *keyLow = userKey, *keyHigh = userKey + SAFER_KEYHALF_SIZE;
BYTE ka[ SAFER_KEYHALF_P_SIZE ], kb[ SAFER_KEYHALF_P_SIZE ];
/* Save the number of rounds as part of the key */
if( noRounds > SAFER_MAX_ROUNDS )
noRounds = SAFER_MAX_ROUNDS;
*key++ = ( BYTE ) noRounds;
/* Copy the user key halves to Ka and Kb */
for( i = 0; i < SAFER_KEYHALF_SIZE; i++ )
{
ka[ i ] = keyLow[ i ];
kb[ i ] = keyHigh[ i ];
}
/* Append a parity byte to keys Ka and Kb */
ka[ SAFER_KEYHALF_SIZE ] = kb[ SAFER_KEYHALF_SIZE ] = 0;
for( i = 0; i < SAFER_KEYHALF_SIZE; i++ )
{
ka[ SAFER_KEYHALF_SIZE ] ^= ka[ i ];
kb[ SAFER_KEYHALF_SIZE ] ^= kb[ i ];
}
/* K1 = Kb */
for( i = 0; i < SAFER_KEYHALF_SIZE; i++ )
*key++ = kb[ i ];
/* Rotate each byte of Ka right by 3 */
for( i = 0; i < SAFER_KEYHALF_SIZE + 1; i++ )
ka[ i ] = ROL( ka[ i ], 5 );
/* Perform the key schedule needed to derive the remaining keys K2, ...
K2r+1 from the 128 bit input key Ka+Kb */
for( round = 1; round <= noRounds; round++)
{
/* Left rotate each byte of Ka and Kb by 6 */
for( i = 0; i < SAFER_KEYHALF_P_SIZE; i++ )
{
ka[ i ] = ROL( ka[ i ], 6 );
kb[ i ] = ROL( kb[ i ], 6 );
}
/* Add the key biases to give K2i-1 and K2i. The original algorithm
specification is:
k[ 2 * i, j ] = ka[ ( ( j + 2 * i - 2 ) % 9 ) + 1 ] + \
expTable[ expTable[ 18 * i + j ] ];
k[ 2 * i + 1, j ] = kb[ ( ( j + 2 * i - 1 ) % 9 ) + 1 ] + \
expTable[ expTable[ 18 * i + 9 + j ] ];
however we rearrange this to calculate K2i-1 and K2i seperately
to eliminate the need to repeatedly evaluate 2i on the LHS */
for( i = 0; i < SAFER_KEYHALF_SIZE; i++ )
if( useSaferSK )
*key++ = ( ka[ ( i + 2 * round - 1 ) % SAFER_KEYHALF_P_SIZE ] + \
expTable[ expTable[ ( SAFER_KEYHALF_P_SIZE * 2 ) * \
round + i + 1 ] ] ) & 0xFF;
else
*key++ = ( ka[ i ] + \
expTable[ expTable[ ( SAFER_KEYHALF_P_SIZE * 2 ) * \
round + i + 1 ] ] ) & 0xFF;
for( i = 0; i < SAFER_KEYHALF_SIZE; i++ )
if( useSaferSK )
*key++ = ( kb[ ( i + 2 * round ) % SAFER_KEYHALF_P_SIZE ] + \
expTable[ expTable[ ( SAFER_KEYHALF_P_SIZE * 2 ) * \
round + i + ( SAFER_KEYHALF_P_SIZE + 1 ) ] ] ) & 0xFF;
else
*key++ = ( kb[ i ] + \
expTable[ expTable[ ( SAFER_KEYHALF_P_SIZE * 2 ) * \
round + i + ( SAFER_KEYHALF_P_SIZE + 1 ) ] ] ) & 0xFF;
}
/* Clean up */
memset( ka, 0, SAFER_BLOCKSIZE );
memset( kb, 0, SAFER_BLOCKSIZE );
}
/* Encrypt a block of data with SAFER */
void saferEncryptBlock( BYTE *data, BYTE *key )
{
BYTE a, b, c, d, e, f, g, h, t;
int rounds = *key++;
/* Copy the input block to local variables */
a = data[ 0 ];
b = data[ 1 ];
c = data[ 2 ];
d = data[ 3 ];
e = data[ 4 ];
f = data[ 5 ];
g = data[ 6 ];
h = data[ 7 ];
while( rounds-- )
{
/* Perform the mixed xor/byte addition of the round input with the
subkey K2i-1, combined with the first level of the nonlinear
layer, either 45^n mod 257 or log45n, and the mixed xor/byte
addition with the subkey K2i */
a = EXP( ( a ^ key[ 0 ] ) & 0xFF ) + key[ 8 ];
b = LOG( ( b + key[ 1 ] ) & 0xFF ) ^ key[ 9 ];
c = LOG( ( c + key[ 2 ] ) & 0xFF ) ^ key[ 10 ];
d = EXP( ( d ^ key[ 3 ] ) & 0xFF ) + key[ 11 ];
e = EXP( ( e ^ key[ 4 ] ) & 0xFF ) + key[ 12 ];
f = LOG( ( f + key[ 5 ] ) & 0xFF ) ^ key[ 13 ];
g = LOG( ( g + key[ 6 ] ) & 0xFF ) ^ key[ 14 ];
h = EXP( ( h ^ key[ 7 ] ) & 0xFF ) + key[ 15 ];
/* Perform the Pseudo-Hadamard Trasform of the round output. If
we were implementing this in assembly language we should
interleave the order of the two operations in the PHT with those
of the following PHT to reduce pipeline stalls, but for the C
version we rely on the compiler to pick this optimization up */
PHT( a, b );
PHT( c, d );
PHT( e, f );
PHT( g, h );
PHT( a, c );
PHT( e, g );
PHT( b, d );
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -