📄 fpeakselection.m
字号:
%% Ant Colony Optimization
clear all; close all; clc
y = load ('CaseCirr');
[row, col]= size(y.sample_tr);
objf = @objf_svm_ACOkfold;
%% Calculate Signal-to-Noise ratio
ca = y.sample_tr(:,find(y.label_tr == 1));
co = y.sample_tr(:,find(y.label_tr == 3));
meanca = mean(ca,2);
meanco = mean(co,2);
stdca = std(ca,0,2);
stdco = std(co,0,2);
S2N = abs((meanca - meanco)./(stdca + stdco));
S2Nsorted = sortbycold([(1:row)' S2N],2);
%% Run the ACO-SVM Algorithm
%----------------------------------------------------------------------
markers = [];
nruns = 100; % no: of runs needed for ACO
m = 5; % # features to be selected
na = 50; % # particles/ants
p = 3; % range between 1 and m-1.
SSt ={};
for n =1:nruns
n
[S_best, best, err_best, err_S_best, err_S2N] = peak_ACO_S2N(y,S2N,m,na,p,objf);
markers = [markers; S_best(1,:)];
save ACO_markers_one markers
end
%----------------------------------------
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -