📄 svm_struct_main.c
字号:
/***********************************************************************//* *//* svm_struct_main.c *//* *//* Command line interface to the alignment learning module of the *//* Support Vector Machine. *//* *//* Author: Thorsten Joachims *//* Date: 03.07.04 *//* *//* Copyright (c) 2004 Thorsten Joachims - All rights reserved *//* *//* This software is available for non-commercial use only. It must *//* not be modified and distributed without prior permission of the *//* author. The author is not responsible for implications from the *//* use of this software. *//* *//***********************************************************************//* uncomment, if you want to use svm-learn out of C++ *//* extern "C" { */# include "../svm_light/svm_common.h"# include "../svm_light/svm_learn.h"# include "svm_struct_learn.h"# include "svm_struct_common.h"# include "../svm_struct_api.h"#include <stdio.h>#include <string.h>#include <assert.h>/* } */char trainfile[200]; /* file with training examples */char modelfile[200]; /* file for resulting classifier */void read_input_parameters(int, char **, char *, char *,long *, long *, STRUCT_LEARN_PARM *, LEARN_PARM *, KERNEL_PARM *);void wait_any_key();void print_help();int main (int argc, char* argv[]){ SAMPLE sample; /* training sample */ LEARN_PARM learn_parm; KERNEL_PARM kernel_parm; STRUCT_LEARN_PARM struct_parm; STRUCTMODEL structmodel; /* Allow the API to perform whatever initialization is required. */ api_initialize(argv[0]); read_input_parameters(argc,argv,trainfile,modelfile,&verbosity, &struct_verbosity,&struct_parm,&learn_parm, &kernel_parm); if(struct_verbosity>=1) { printf("Reading training examples..."); fflush(stdout); } /* read the training examples */ sample=read_struct_examples(trainfile,&struct_parm); if(struct_verbosity>=1) { printf("done\n"); fflush(stdout); } /* Do the learning and return structmodel. */ svm_learn_struct(sample,&struct_parm,&learn_parm,&kernel_parm,&structmodel); /* Warning: The model contains references to the original data 'docs'. If you want to free the original data, and only keep the model, you have to make a deep copy of 'model'. */ if(struct_verbosity>=1) { printf("Writing learned model...");fflush(stdout); } write_struct_model(modelfile,&structmodel,&struct_parm); if(struct_verbosity>=1) { printf("done\n");fflush(stdout); } free_struct_sample(sample); free_struct_model(structmodel); /* Allow the API to perform whatever cleanup is required. */ api_finalize(); return 0;}/*---------------------------------------------------------------------------*/void read_input_parameters(int argc,char *argv[],char *trainfile, char *modelfile, long *verbosity,long *struct_verbosity, STRUCT_LEARN_PARM *struct_parm, LEARN_PARM *learn_parm, KERNEL_PARM *kernel_parm){ long i; char type[100]; /* set default */ /* these defaults correspond to the experiments in the paper*/ struct_parm->C=0.01; struct_parm->slack_norm=1; struct_parm->epsilon=0.01; struct_parm->custom_argc=0; struct_parm->loss_function=0; struct_parm->loss_type=SLACK_RESCALING; struct_parm->newconstretrain=100; strcpy (modelfile, "svm_struct_model"); strcpy (learn_parm->predfile, "trans_predictions"); strcpy (learn_parm->alphafile, ""); (*verbosity)=0;/*verbosity for svm_light*/ (*struct_verbosity)=1; /*verbosity for struct learning portion*/ learn_parm->biased_hyperplane=1; learn_parm->remove_inconsistent=0; learn_parm->skip_final_opt_check=0; learn_parm->svm_maxqpsize=10; learn_parm->svm_newvarsinqp=0; learn_parm->svm_iter_to_shrink=-9999; learn_parm->maxiter=100000; learn_parm->kernel_cache_size=40; learn_parm->svm_c=99999999; /* everridden by struct_parm->C */ learn_parm->eps=0.01; learn_parm->transduction_posratio=-1.0; learn_parm->svm_costratio=1.0; learn_parm->svm_costratio_unlab=1.0; learn_parm->svm_unlabbound=1E-5; learn_parm->epsilon_crit=0.001; learn_parm->epsilon_a=1E-10; /* changed from 1e-15 */ learn_parm->compute_loo=0; learn_parm->rho=1.0; learn_parm->xa_depth=0; kernel_parm->kernel_type=0; kernel_parm->poly_degree=3; kernel_parm->rbf_gamma=1.0; kernel_parm->coef_lin=1; kernel_parm->coef_const=1; strcpy(kernel_parm->custom,"empty"); strcpy(type,"c"); for(i=1;(i<argc) && ((argv[i])[0] == '-');i++) { switch ((argv[i])[1]) { case '?': print_help(); exit(0); case 'a': i++; strcpy(learn_parm->alphafile,argv[i]); break; case 'c': i++; struct_parm->C=atof(argv[i]); break; case 'p': i++; struct_parm->slack_norm=atof(argv[i]); break; case 'e': i++; struct_parm->epsilon=atof(argv[i]); break; case 'k': i++; struct_parm->newconstretrain=atol(argv[i]); break; case 'h': i++; learn_parm->svm_iter_to_shrink=atol(argv[i]); break; case '#': i++; learn_parm->maxiter=atol(argv[i]); break; case 'm': i++; learn_parm->kernel_cache_size=atol(argv[i]); break; case 'o': i++; struct_parm->loss_type=atol(argv[i]); break; case 'n': i++; learn_parm->svm_newvarsinqp=atol(argv[i]); break; case 'q': i++; learn_parm->svm_maxqpsize=atol(argv[i]); break; case 'l': i++; struct_parm->loss_function=atol(argv[i]); break; case 't': i++; kernel_parm->kernel_type=atol(argv[i]); break; case 'd': i++; kernel_parm->poly_degree=atol(argv[i]); break; case 'g': i++; kernel_parm->rbf_gamma=atof(argv[i]); break; case 's': i++; kernel_parm->coef_lin=atof(argv[i]); break; case 'r': i++; kernel_parm->coef_const=atof(argv[i]); break; case 'u': i++; strcpy(kernel_parm->custom,argv[i]); break; case '-': strcpy(struct_parm->custom_argv[struct_parm->custom_argc++],argv[i]);i++; strcpy(struct_parm->custom_argv[struct_parm->custom_argc++],argv[i]);break; case 'v': i++; (*struct_verbosity)=atol(argv[i]); break; case 'y': i++; (*verbosity)=atol(argv[i]); break; default: printf("\nUnrecognized option %s!\n\n",argv[i]); parse_struct_parameters(struct_parm); print_help(); exit(0); } } parse_struct_parameters(struct_parm); if(i>=argc) { printf("\nNot enough input parameters!\n\n"); wait_any_key(); print_help(); exit(0); } strcpy (trainfile, argv[i]); if((i+1)<argc) { strcpy (modelfile, argv[i+1]); } if(learn_parm->svm_iter_to_shrink == -9999) { if(kernel_parm->kernel_type == LINEAR) learn_parm->svm_iter_to_shrink=2; else learn_parm->svm_iter_to_shrink=100; } if((learn_parm->skip_final_opt_check) && (kernel_parm->kernel_type == LINEAR)) { printf("\nIt does not make sense to skip the final optimality check for linear kernels.\n\n"); learn_parm->skip_final_opt_check=0; } if((learn_parm->skip_final_opt_check) && (learn_parm->remove_inconsistent)) { printf("\nIt is necessary to do the final optimality check when removing inconsistent \nexamples.\n"); wait_any_key(); print_help(); exit(0); } if((learn_parm->svm_maxqpsize<2)) { printf("\nMaximum size of QP-subproblems not in valid range: %ld [2..]\n",learn_parm->svm_maxqpsize); wait_any_key(); print_help(); exit(0); } if((learn_parm->svm_maxqpsize<learn_parm->svm_newvarsinqp)) { printf("\nMaximum size of QP-subproblems [%ld] must be larger than the number of\n",learn_parm->svm_maxqpsize); printf("new variables [%ld] entering the working set in each iteration.\n",learn_parm->svm_newvarsinqp); wait_any_key(); print_help(); exit(0); } if(learn_parm->svm_iter_to_shrink<1) { printf("\nMaximum number of iterations for shrinking not in valid range: %ld [1,..]\n",learn_parm->svm_iter_to_shrink); wait_any_key(); print_help(); exit(0); } if(learn_parm->svm_c<0) { printf("\nThe C parameter must be greater than zero!\n\n"); wait_any_key(); print_help(); exit(0); } if(learn_parm->transduction_posratio>1) { printf("\nThe fraction of unlabeled examples to classify as positives must\n"); printf("be less than 1.0 !!!\n\n"); wait_any_key(); print_help(); exit(0); } if(learn_parm->svm_costratio<=0) { printf("\nThe COSTRATIO parameter must be greater than zero!\n\n"); wait_any_key(); print_help(); exit(0); } if(struct_parm->epsilon<=0) { printf("\nThe epsilon parameter must be greater than zero!\n\n"); wait_any_key(); print_help(); exit(0); } if((struct_parm->slack_norm<1) || (struct_parm->slack_norm>2)) { printf("\nThe norm of the slacks must be either 1 (L1-norm) or 2 (L2-norm)!\n\n"); wait_any_key(); print_help(); exit(0); } if((struct_parm->loss_type != SLACK_RESCALING) && (struct_parm->loss_type != MARGIN_RESCALING)) { printf("\nThe loss type must be either 1 (slack rescaling) or 2 (margin rescaling)!\n\n"); wait_any_key(); print_help(); exit(0); } if(learn_parm->rho<0) { printf("\nThe parameter rho for xi/alpha-estimates and leave-one-out pruning must\n"); printf("be greater than zero (typically 1.0 or 2.0, see T. Joachims, Estimating the\n"); printf("Generalization Performance of an SVM Efficiently, ICML, 2000.)!\n\n"); wait_any_key(); print_help(); exit(0); } if((learn_parm->xa_depth<0) || (learn_parm->xa_depth>100)) { printf("\nThe parameter depth for ext. xi/alpha-estimates must be in [0..100] (zero\n"); printf("for switching to the conventional xa/estimates described in T. Joachims,\n"); printf("Estimating the Generalization Performance of an SVM Efficiently, ICML, 2000.)\n"); wait_any_key(); print_help(); exit(0); } //parse_struct_parameters(struct_parm);}void wait_any_key(){ printf("\n(more)\n"); (void)getc(stdin);}void print_help(){ printf("\nSVM-struct learning module: %s, %s, %s\n",INST_NAME,INST_VERSION,INST_VERSION_DATE); printf(" includes SVM-struct %s for learning complex outputs, %s\n",STRUCT_VERSION,STRUCT_VERSION_DATE); printf(" includes SVM-light %s quadratic optimizer, %s\n",VERSION,VERSION_DATE); copyright_notice(); printf(" usage: svm_struct_learn [options] example_file model_file\n\n"); printf("Arguments:\n"); printf(" example_file-> file with training data\n"); printf(" model_file -> file to store learned decision rule in\n"); printf("General options:\n"); printf(" -? -> this help\n"); printf(" -v [0..3] -> verbosity level (default 1)\n"); printf(" -y [0..3] -> verbosity level for svm_light (default 0)\n"); printf("Learning options:\n"); printf(" -c float -> C: trade-off between training error\n"); printf(" and margin (default 0.01)\n"); printf(" -p [1,2] -> L-norm to use for slack variables. Use 1 for L1-norm,\n"); printf(" use 2 for squared slacks. (default 1)\n"); printf(" -o [1,2] -> Slack rescaling method to use for loss.\n"); printf(" 1: slack rescaling\n"); printf(" 2: margin rescaling\n"); printf(" (default 1)\n"); printf(" -l [0..] -> Loss function to use.\n"); printf(" 0: zero/one loss\n"); printf(" (default 0)\n"); printf("Kernel options:\n"); printf(" -t int -> type of kernel function:\n"); printf(" 0: linear (default)\n"); printf(" 1: polynomial (s a*b+c)^d\n"); printf(" 2: radial basis function exp(-gamma ||a-b||^2)\n"); printf(" 3: sigmoid tanh(s a*b + c)\n"); printf(" 4: user defined kernel from kernel.h\n"); printf(" -d int -> parameter d in polynomial kernel\n"); printf(" -g float -> parameter gamma in rbf kernel\n"); printf(" -s float -> parameter s in sigmoid/poly kernel\n"); printf(" -r float -> parameter c in sigmoid/poly kernel\n"); printf(" -u string -> parameter of user defined kernel\n"); printf("Optimization options (see [2][3]):\n"); printf(" -q [2..] -> maximum size of QP-subproblems (default 10)\n"); printf(" -n [2..q] -> number of new variables entering the working set\n"); printf(" in each iteration (default n = q). Set n<q to prevent\n"); printf(" zig-zagging.\n"); printf(" -m [5..] -> size of cache for kernel evaluations in MB (default 40)\n"); printf(" The larger the faster...\n"); printf(" -e float -> eps: Allow that error for termination criterion\n"); printf(" (default 0.01)\n"); printf(" -h [5..] -> number of iterations a variable needs to be\n"); printf(" optimal before considered for shrinking (default 100)\n"); printf(" -k [1..] -> number of new constraints to accumulate before\n"); printf(" recomputing the QP solution (default 100)\n"); printf(" -# int -> terminate optimization, if no progress after this\n"); printf(" number of iterations. (default 100000)\n"); printf("Output options:\n"); printf(" -a string -> write all alphas to this file after learning\n"); printf(" (in the same order as in the training set)\n"); printf("Structure learning options:\n"); print_struct_help(); wait_any_key(); printf("\nMore details in:\n"); printf("[1] T. Joachims, Learning to Align Sequences: A Maximum Margin Aproach.\n"); printf(" Technical Report, September, 2003.\n"); printf("[2] I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun, Support Vector \n"); printf(" Learning for Interdependent and Structured Output Spaces, ICML, 2004.\n"); printf("[3] T. Joachims, Making Large-Scale SVM Learning Practical. Advances in\n"); printf(" Kernel Methods - Support Vector Learning, B. Sch鰈kopf and C. Burges and\n"); printf(" A. Smola (ed.), MIT Press, 1999.\n"); printf("[4] T. Joachims, Learning to Classify Text Using Support Vector\n"); printf(" Machines: Methods, Theory, and Algorithms. Dissertation, Kluwer,\n"); printf(" 2002.\n\n");}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -