📄 svm_learn.c
字号:
if(verbosity==1) { printf("-"); fflush(stdout); } } else { loocomputed++; heldout_c=learn_parm->svm_cost[heldout]; /* set upper bound to zero */ learn_parm->svm_cost[heldout]=0; /* make sure heldout example is not currently */ /* shrunk away. Assumes that lin is up to date! */ shrink_state.active[heldout]=1; if(verbosity>=2) printf("\nLeave-One-Out test on example %ld\n",heldout); if(verbosity>=1) { printf("(?[%ld]",heldout); fflush(stdout); } optimize_to_convergence(docs,label,totdoc,totwords,learn_parm, kernel_parm, kernel_cache,&shrink_state,model,inconsistent,unlabeled, a,lin,c,&timing_profile, &maxdiff,heldout,(long)2); /* printf("%.20f\n",(lin[heldout]-model->b)*(double)label[heldout]); */ if(((lin[heldout]-model->b)*(double)label[heldout]) <= 0.0) { loo_count++; /* there was a loo-error */ if(label[heldout] > 0) loo_count_pos++; else loo_count_neg++; if(verbosity>=1) { printf("-)"); fflush(stdout); } } else { if(verbosity>=1) { printf("+)"); fflush(stdout); } } /* now we need to restore the original data set*/ learn_parm->svm_cost[heldout]=heldout_c; /* restore upper bound */ } } /* end of leave-one-out loop */ if(verbosity>=1) { printf("\nRetrain on full problem"); fflush(stdout); } optimize_to_convergence(docs,label,totdoc,totwords,learn_parm, kernel_parm, kernel_cache,&shrink_state,model,inconsistent,unlabeled, a,lin,c,&timing_profile, &maxdiff,(long)-1,(long)1); if(verbosity >= 1) printf("done.\n"); /* after all leave-one-out computed */ model->loo_error=100.0*loo_count/(double)totdoc; model->loo_recall=(1.0-(double)loo_count_pos/(double)trainpos)*100.0; model->loo_precision=(trainpos-loo_count_pos)/ (double)(trainpos-loo_count_pos+loo_count_neg)*100.0; if(verbosity >= 1) { fprintf(stdout,"Leave-one-out estimate of the error: error=%.2f%%\n", model->loo_error); fprintf(stdout,"Leave-one-out estimate of the recall: recall=%.2f%%\n", model->loo_recall); fprintf(stdout,"Leave-one-out estimate of the precision: precision=%.2f%%\n", model->loo_precision); fprintf(stdout,"Actual leave-one-outs computed: %ld (rho=%.2f)\n", loocomputed,learn_parm->rho); printf("Runtime for leave-one-out in cpu-seconds: %.2f\n", (double)(get_runtime()-runtime_start_loo)/100.0); } } if(learn_parm->alphafile[0]) write_alphas(learn_parm->alphafile,a,label,totdoc); shrink_state_cleanup(&shrink_state); free(label); free(inconsistent); free(unlabeled); free(c); free(a); free(a_fullset); free(xi_fullset); free(lin); free(learn_parm->svm_cost);}/* Learns an SVM regression model based on the training data in docs/label. The resulting model is returned in the structure model. */void svm_learn_regression(DOC **docs, double *value, long int totdoc, long int totwords, LEARN_PARM *learn_parm, KERNEL_PARM *kernel_parm, KERNEL_CACHE **kernel_cache, MODEL *model) /* docs: Training vectors (x-part) */ /* class: Training value (y-part) */ /* totdoc: Number of examples in docs/label */ /* totwords: Number of features (i.e. highest feature index) */ /* learn_parm: Learning paramenters */ /* kernel_parm: Kernel paramenters */ /* kernel_cache:Initialized Cache, if using a kernel. NULL if linear. Note that it will be free'd and reassigned */ /* model: Returns learning result (assumed empty before called) */{ long *inconsistent,i,j; long inconsistentnum; long upsupvecnum; double loss,model_length,example_length; double maxdiff,*lin,*a,*c; long runtime_start,runtime_end; long iterations,kernel_cache_size; long *unlabeled; double r_delta_sq=0,r_delta,r_delta_avg; double *xi_fullset; /* buffer for storing xi on full sample in loo */ double *a_fullset; /* buffer for storing alpha on full sample in loo */ TIMING timing_profile; SHRINK_STATE shrink_state; DOC **docs_org; long *label; /* set up regression problem in standard form */ docs_org=docs; docs = (DOC **)my_malloc(sizeof(DOC)*2*totdoc); label = (long *)my_malloc(sizeof(long)*2*totdoc); c = (double *)my_malloc(sizeof(double)*2*totdoc); for(i=0;i<totdoc;i++) { j=2*totdoc-1-i; docs[i]=create_example(i,0,0,docs_org[i]->costfactor,docs_org[i]->fvec); label[i]=+1; c[i]=value[i]; docs[j]=create_example(j,0,0,docs_org[i]->costfactor,docs_org[i]->fvec); label[j]=-1; c[j]=value[i]; } totdoc*=2; /* need to get a bigger kernel cache */ if(*kernel_cache) { kernel_cache_size=(*kernel_cache)->buffsize*sizeof(CFLOAT)/(1024*1024); kernel_cache_cleanup(*kernel_cache); (*kernel_cache)=kernel_cache_init(totdoc,kernel_cache_size); } runtime_start=get_runtime(); timing_profile.time_kernel=0; timing_profile.time_opti=0; timing_profile.time_shrink=0; timing_profile.time_update=0; timing_profile.time_model=0; timing_profile.time_check=0; timing_profile.time_select=0; kernel_cache_statistic=0; learn_parm->totwords=totwords; /* make sure -n value is reasonable */ if((learn_parm->svm_newvarsinqp < 2) || (learn_parm->svm_newvarsinqp > learn_parm->svm_maxqpsize)) { learn_parm->svm_newvarsinqp=learn_parm->svm_maxqpsize; } init_shrink_state(&shrink_state,totdoc,(long)MAXSHRINK); inconsistent = (long *)my_malloc(sizeof(long)*totdoc); unlabeled = (long *)my_malloc(sizeof(long)*totdoc); a = (double *)my_malloc(sizeof(double)*totdoc); a_fullset = (double *)my_malloc(sizeof(double)*totdoc); xi_fullset = (double *)my_malloc(sizeof(double)*totdoc); lin = (double *)my_malloc(sizeof(double)*totdoc); learn_parm->svm_cost = (double *)my_malloc(sizeof(double)*totdoc); model->supvec = (DOC **)my_malloc(sizeof(DOC *)*(totdoc+2)); model->alpha = (double *)my_malloc(sizeof(double)*(totdoc+2)); model->index = (long *)my_malloc(sizeof(long)*(totdoc+2)); model->at_upper_bound=0; model->b=0; model->supvec[0]=0; /* element 0 reserved and empty for now */ model->alpha[0]=0; model->lin_weights=NULL; model->totwords=totwords; model->totdoc=totdoc; model->kernel_parm=(*kernel_parm); model->sv_num=1; model->loo_error=-1; model->loo_recall=-1; model->loo_precision=-1; model->xa_error=-1; model->xa_recall=-1; model->xa_precision=-1; inconsistentnum=0; r_delta=estimate_r_delta(docs,totdoc,kernel_parm); r_delta_sq=r_delta*r_delta; r_delta_avg=estimate_r_delta_average(docs,totdoc,kernel_parm); if(learn_parm->svm_c == 0.0) { /* default value for C */ learn_parm->svm_c=1.0/(r_delta_avg*r_delta_avg); if(verbosity>=1) printf("Setting default regularization parameter C=%.4f\n", learn_parm->svm_c); } for(i=0;i<totdoc;i++) { /* various inits */ inconsistent[i]=0; a[i]=0; lin[i]=0; unlabeled[i]=0; if(label[i] > 0) { learn_parm->svm_cost[i]=learn_parm->svm_c*learn_parm->svm_costratio* docs[i]->costfactor; } else if(label[i] < 0) { learn_parm->svm_cost[i]=learn_parm->svm_c*docs[i]->costfactor; } } /* caching makes no sense for linear kernel */ if((kernel_parm->kernel_type == LINEAR) && (*kernel_cache)) { printf("WARNING: Using a kernel cache for linear case will slow optimization down!\n"); } if(verbosity==1) { printf("Optimizing"); fflush(stdout); } /* train the svm */ iterations=optimize_to_convergence(docs,label,totdoc,totwords,learn_parm, kernel_parm,*kernel_cache,&shrink_state, model,inconsistent,unlabeled,a,lin,c, &timing_profile,&maxdiff,(long)-1, (long)1); if(verbosity>=1) { if(verbosity==1) printf("done. (%ld iterations)\n",iterations); printf("Optimization finished (maxdiff=%.5f).\n",maxdiff); runtime_end=get_runtime(); if(verbosity>=2) { printf("Runtime in cpu-seconds: %.2f (%.2f%% for kernel/%.2f%% for optimizer/%.2f%% for final/%.2f%% for update/%.2f%% for model/%.2f%% for check/%.2f%% for select)\n", ((float)runtime_end-(float)runtime_start)/100.0, (100.0*timing_profile.time_kernel)/(float)(runtime_end-runtime_start), (100.0*timing_profile.time_opti)/(float)(runtime_end-runtime_start), (100.0*timing_profile.time_shrink)/(float)(runtime_end-runtime_start), (100.0*timing_profile.time_update)/(float)(runtime_end-runtime_start), (100.0*timing_profile.time_model)/(float)(runtime_end-runtime_start), (100.0*timing_profile.time_check)/(float)(runtime_end-runtime_start), (100.0*timing_profile.time_select)/(float)(runtime_end-runtime_start)); } else { printf("Runtime in cpu-seconds: %.2f\n", (runtime_end-runtime_start)/100.0); } if(learn_parm->remove_inconsistent) { inconsistentnum=0; for(i=0;i<totdoc;i++) if(inconsistent[i]) inconsistentnum++; printf("Number of SV: %ld (plus %ld inconsistent examples)\n", model->sv_num-1,inconsistentnum); } else { upsupvecnum=0; for(i=1;i<model->sv_num;i++) { if(fabs(model->alpha[i]) >= (learn_parm->svm_cost[(model->supvec[i])->docnum]- learn_parm->epsilon_a)) upsupvecnum++; } printf("Number of SV: %ld (including %ld at upper bound)\n", model->sv_num-1,upsupvecnum); } if((verbosity>=1) && (!learn_parm->skip_final_opt_check)) { loss=0; model_length=0; for(i=0;i<totdoc;i++) { if((lin[i]-model->b)*(double)label[i] < (-learn_parm->eps+(double)label[i]*c[i])-learn_parm->epsilon_crit) loss+=-learn_parm->eps+(double)label[i]*c[i]-(lin[i]-model->b)*(double)label[i]; model_length+=a[i]*label[i]*lin[i]; } model_length=sqrt(model_length); fprintf(stdout,"L1 loss: loss=%.5f\n",loss); fprintf(stdout,"Norm of weight vector: |w|=%.5f\n",model_length); example_length=estimate_sphere(model,kernel_parm); fprintf(stdout,"Norm of longest example vector: |x|=%.5f\n", length_of_longest_document_vector(docs,totdoc,kernel_parm)); } if(verbosity>=1) { printf("Number of kernel evaluations: %ld\n",kernel_cache_statistic); } } if(learn_parm->alphafile[0]) write_alphas(learn_parm->alphafile,a,label,totdoc); /* this makes sure the model we return does not contain pointers to the temporary documents */ for(i=1;i<model->sv_num;i++) { j=model->supvec[i]->docnum; if(j >= (totdoc/2)) { j=totdoc-j-1; } model->supvec[i]=docs_org[j]; } shrink_state_cleanup(&shrink_state); for(i=0;i<totdoc;i++) free_example(docs[i],0); free(docs); free(label); free(inconsistent); free(unlabeled); free(c); free(a); free(a_fullset); free(xi_fullset); free(lin); free(learn_parm->svm_cost);}void svm_learn_ranking(DOC **docs, double *rankvalue, long int totdoc, long int totwords, LEARN_PARM *learn_parm, KERNEL_PARM *kernel_parm, KERNEL_CACHE **kernel_cache, MODEL *model) /* docs: Training vectors (x-part) */ /* rankvalue: Training target values that determine the ranking */ /* totdoc: Number of examples in docs/label */ /* totwords: Number of features (i.e. highest feature index) */ /* learn_parm: Learning paramenters */ /* kernel_parm: Kernel paramenters */ /* kernel_cache:Initialized pointer to Cache of size 1*totdoc, if using a kernel. NULL if linear. NOTE: Cache is getting reinitialized in this function */ /* model: Returns learning result (assumed empty before called) */{ DOC **docdiff; long i,j,k,totpair,kernel_cache_size; double *target,*alpha,cost; long *greater,*lesser; MODEL *pairmodel; SVECTOR *flow,*fhigh; totpair=0; for(i=0;i<totdoc;i++) { for(j=i+1;j<totdoc;j++) { if((docs[i]->queryid==docs[j]->queryid) && (rankvalue[i] != rankvalue[j])) { totpair++; } } } printf("Constructing %ld rank constraints...",totpair); fflush(stdout); docdiff=(DOC **)my_malloc(sizeof(DOC)*totpair); target=(double *)my_malloc(sizeof(double)*totpair); greater=(long *)my_malloc(sizeof(long)*totpair); lesser=(long *)my_malloc(sizeof(long)*totpair); k=0; for(i=0;i<totdoc;i++) { for(j=i+1;j<totdoc;j++) { if(docs[i]->queryid == docs[j]->queryid) { cost=(docs[i]->costfactor+docs[j]->costfactor)/2.0; if(rankvalue[i] > rankvalue[j]) { if(kernel_parm->kernel_type == LINEAR) docdiff[k]=create_example(k,0,0,cost, sub_ss(docs[i]->fvec,docs[j]->fvec)); else { flow=copy_svector(docs[j]->fvec); flow->factor=-1.0; flow->next=NULL;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -