📄 nanmean.m
字号:
function mx = nanmean(x)%NANMEAN Mean of available data, ignoring NaNs.%% NANMEAN(X) returns the mean of the available data in X, treating% NaNs as missing values. For vectors, NANMEAN(X) is the mean value% of the non-NaN elements in X. For matrices, NANMEAN(X) is a row% vector containing the mean value of each column, ignoring NaNs.%% If, in forming the mean, the fraction of missing terms exceeds% a critical value, the mean is set to NaN.% % See also MEAN, NANSTD, NANSUM. % maximum admissible fraction of missing values max_miss = 0.99; error(nargchk(1,1,nargin)) % check number of input arguments if isempty(x) % check for empty input. mx = NaN; return end % if x is vector, make sure it is a row vector if length(x)==prod(size(x)) x = x(:); end [m,n] = size(x); % replace NaNs with zeros. inan = find(isnan(x)); x(inan) = zeros(size(inan)); % determine number of available observations on each variable [i,j] = ind2sub([m,n], inan); % subscripts of missing entries nans = sparse(i,j,1,m,n); % indicator matrix for missing values nobs = m - sum(nans); % set nobs to NaN when there are too few entries to form robust average minobs = m * (1 - max_miss); k = find(nobs < minobs); nobs(k) = NaN; mx = sum(x) ./ nobs;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -