📄 nanstd.m
字号:
function sx = nanstd(x, flag)%NANSTD Standard deviation of available data, ignoring NaNs.%% NANSTD(X) returns the standard deviation of the available data in% X, treating NaNs as missing values. For vectors, NANSTD(X) is% the standard deviation of the non-NaN elements in X. For% matrices, NANSTD(X) is a row vector containing the standard% deviation of the non-NaN elements in each column.%% NANSTD(X) normalizes by (N-1) where, for each element of% NANSTD(X), N is number of available values.%% NANSTD(X,0) normalizes by N and produces the second moment of the% available data about their mean. NANSTD(X,1) is the same as% NANSTD(X).% % See also STD, NANMEAN. % maximum admissible fraction of missing values max_miss = 0.6; error(nargchk(1,2,nargin)) % check number of input arguments if isempty(x) % check for empty input. sx = NaN; return end if ndims(x) > 2, error('Data must be vector or 2-D array.'); end if nargin < 2, flag = 1; end % default: normalize by nobs-1 % if x is a vector, make sure it is a row vector if length(x)==prod(size(x)) x = x(:); end [m,n] = size(x); % replace NaNs with zeros. inan = find(isnan(x)); x(inan) = zeros(size(inan)); % determine number of available observations on each variable [i,j] = ind2sub([m,n], inan); % subscripts of missing entries nans = sparse(i,j,1,m,n); % indicator matrix for missing values nobs = m - sum(nans); % set nobs to NaN when there are too few entries to form robust average minobs = m * (1 - max_miss); k = find(nobs < minobs); nobs(k) = NaN; % center data xc = x - repmat(sum(x) ./ nobs, m, 1); % remove mean % standard deviation sx = sqrt(sum(conj(xc).*xc) ./ (nobs-flag));
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -