⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 nanstd.m

📁 一个很有用的EM算法程序包
💻 M
字号:
function sx = nanstd(x, flag)%NANSTD   Standard deviation of available data, ignoring NaNs.%%    NANSTD(X) returns the standard deviation of the available data in%    X, treating NaNs as missing values.  For vectors, NANSTD(X) is%    the standard deviation of the non-NaN elements in X.  For%    matrices, NANSTD(X) is a row vector containing the standard%    deviation of the non-NaN elements in each column.%%    NANSTD(X) normalizes by (N-1) where, for each element of%    NANSTD(X), N is number of available values.%%    NANSTD(X,0) normalizes by N and produces the second moment of the%    available data about their mean.  NANSTD(X,1) is the same as%    NANSTD(X).%  %    See also STD, NANMEAN.  % maximum admissible fraction of missing values  max_miss = 0.6;                  error(nargchk(1,2,nargin))          % check number of input arguments   if isempty(x)                       % check for empty input.    sx = NaN;    return  end  if ndims(x) > 2,  error('Data must be vector or 2-D array.'); end  if nargin < 2, flag = 1; end        % default: normalize by nobs-1  % if x is a vector, make sure it is a row vector  if length(x)==prod(size(x))             x = x(:);                           end    [m,n]   = size(x);    % replace NaNs with zeros.  inan    = find(isnan(x));  x(inan) = zeros(size(inan));    % determine number of available observations on each variable  [i,j]   = ind2sub([m,n], inan);     % subscripts of missing entries  nans    = sparse(i,j,1,m,n);        % indicator matrix for missing values  nobs    = m - sum(nans);  % set nobs to NaN when there are too few entries to form robust average  minobs  = m * (1 - max_miss);  k       = find(nobs < minobs);  nobs(k) = NaN;    % center data  xc      = x - repmat(sum(x) ./ nobs, m, 1);  % remove mean    % standard deviation  sx      = sqrt(sum(conj(xc).*xc) ./ (nobs-flag));

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -