📄 predict.c
字号:
#include <stdio.h>#include <ctype.h>#include <stdlib.h>#include <string.h>#include "linear.h"char* line;int max_line_len = 1024;struct feature_node *x;int max_nr_attr = 64;struct model* model_;int flag_predict_probability=0;void do_predict(FILE *input, FILE *output, struct model* model_){ int correct = 0; int total = 0; int nr_class=get_nr_class(model_); double *prob_estimates=NULL; int j, n; int nr_feature=get_nr_feature(model_); if(model_->bias>=0) n=nr_feature+1; else n=nr_feature; if(flag_predict_probability) { int *labels; if(model_->param.solver_type!=L2_LR) { fprintf(stderr, "probability output is only supported for logistic regression\n"); return; } labels=(int *) malloc(nr_class*sizeof(int)); get_labels(model_,labels); prob_estimates = (double *) malloc(nr_class*sizeof(double)); fprintf(output,"labels"); for(j=0;j<nr_class;j++) fprintf(output," %d",labels[j]); fprintf(output,"\n"); free(labels); } while(1) { int i = 0; int c; double target; int target_label, predict_label; if (fscanf(input,"%lf",&target)==EOF) break; target_label=(int)target; while(1) { if(i>=max_nr_attr-2) // need one more for index = -1 { max_nr_attr *= 2; x = (struct feature_node *) realloc(x,max_nr_attr*sizeof(struct feature_node)); } do { c = getc(input); if(c=='\n' || c==EOF) goto out2; } while(isspace(c)); ungetc(c,input); if (fscanf(input,"%d:%lf",&x[i].index,&x[i].value) < 2) { fprintf(stderr,"Wrong input format at line %d\n", total+1); exit(1); } // feature indices larger than those in training are not used if(x[i].index<=nr_feature) ++i; }out2: if(model_->bias>=0) { x[i].index = n; x[i].value = model_->bias; i++; } x[i].index = -1; if(flag_predict_probability) { int j; predict_label = predict_probability(model_,x,prob_estimates); fprintf(output,"%d ",predict_label); for(j=0;j<model_->nr_class;j++) fprintf(output,"%g ",prob_estimates[j]); fprintf(output,"\n"); } else { predict_label = predict(model_,x); fprintf(output,"%d\n",predict_label); } if(predict_label == target_label) ++correct; ++total; } printf("Accuracy = %g%% (%d/%d)\n", (double)correct/total*100,correct,total); if(flag_predict_probability) free(prob_estimates);}void exit_with_help(){ printf( "Usage: predict [options] test_file model_file output_file\n" "options:\n" "-b probability_estimates: whether to output probability estimates, 0 or 1 (default 0)\n" ); exit(1);}int main(int argc, char **argv){ FILE *input, *output; int i; // parse options for(i=1;i<argc;i++) { if(argv[i][0] != '-') break; ++i; switch(argv[i-1][1]) { case 'b': flag_predict_probability = atoi(argv[i]); break; default: fprintf(stderr,"unknown option\n"); exit_with_help(); break; } } if(i>=argc) exit_with_help(); input = fopen(argv[i],"r"); if(input == NULL) { fprintf(stderr,"can't open input file %s\n",argv[i]); exit(1); } output = fopen(argv[i+2],"w"); if(output == NULL) { fprintf(stderr,"can't open output file %s\n",argv[i+2]); exit(1); } if((model_=load_model(argv[i+1]))==0) { fprintf(stderr,"can't open model file %s\n",argv[i+1]); exit(1); } line = (char *) malloc(max_line_len*sizeof(char)); x = (struct feature_node *) malloc(max_nr_attr*sizeof(struct feature_node)); do_predict(input, output, model_); destroy_model(model_); free(line); free(x); fclose(input); fclose(output); return 0;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -