⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 predict.c

📁 关于支持向量机的,有专门的工具箱,很好用,有什么问题请指教
💻 C
字号:
#include <stdio.h>#include <ctype.h>#include <stdlib.h>#include <string.h>#include "linear.h"char* line;int max_line_len = 1024;struct feature_node *x;int max_nr_attr = 64;struct model* model_;int flag_predict_probability=0;void do_predict(FILE *input, FILE *output, struct model* model_){	int correct = 0;	int total = 0;	int nr_class=get_nr_class(model_);	double *prob_estimates=NULL;	int j, n;	int nr_feature=get_nr_feature(model_);	if(model_->bias>=0)		n=nr_feature+1;	else		n=nr_feature;	if(flag_predict_probability)	{		int *labels;		if(model_->param.solver_type!=L2_LR)		{			fprintf(stderr, "probability output is only supported for logistic regression\n");			return;		}		labels=(int *) malloc(nr_class*sizeof(int));		get_labels(model_,labels);		prob_estimates = (double *) malloc(nr_class*sizeof(double));		fprintf(output,"labels");				for(j=0;j<nr_class;j++)			fprintf(output," %d",labels[j]);		fprintf(output,"\n");		free(labels);	}	while(1)	{		int i = 0;		int c;		double target;		int target_label, predict_label;		if (fscanf(input,"%lf",&target)==EOF)			break;		target_label=(int)target;		while(1)		{			if(i>=max_nr_attr-2)	// need one more for index = -1			{				max_nr_attr *= 2;				x = (struct feature_node *) realloc(x,max_nr_attr*sizeof(struct feature_node));			}			do {				c = getc(input);				if(c=='\n' || c==EOF) goto out2;			} while(isspace(c));			ungetc(c,input);			if (fscanf(input,"%d:%lf",&x[i].index,&x[i].value) < 2)			{				fprintf(stderr,"Wrong input format at line %d\n", total+1);				exit(1);			}			// feature indices larger than those in training are not used			if(x[i].index<=nr_feature)				++i;		}out2:		if(model_->bias>=0)		{			x[i].index = n;			x[i].value = model_->bias;			i++;		}		x[i].index = -1;		if(flag_predict_probability)		{			int j;			predict_label = predict_probability(model_,x,prob_estimates);			fprintf(output,"%d ",predict_label);			for(j=0;j<model_->nr_class;j++)				fprintf(output,"%g ",prob_estimates[j]);			fprintf(output,"\n");		}		else		{			predict_label = predict(model_,x);			fprintf(output,"%d\n",predict_label);		}		if(predict_label == target_label)			++correct;		++total;	}	printf("Accuracy = %g%% (%d/%d)\n", (double)correct/total*100,correct,total);	if(flag_predict_probability)		free(prob_estimates);}void exit_with_help(){	printf(	"Usage: predict [options] test_file model_file output_file\n"	"options:\n"	"-b probability_estimates: whether to output probability estimates, 0 or 1 (default 0)\n"	);	exit(1);}int main(int argc, char **argv){	FILE *input, *output;	int i;	// parse options	for(i=1;i<argc;i++)	{		if(argv[i][0] != '-') break;		++i;		switch(argv[i-1][1])		{			case 'b':				flag_predict_probability = atoi(argv[i]);				break;			default:				fprintf(stderr,"unknown option\n");				exit_with_help();				break;		}	}	if(i>=argc)		exit_with_help();	input = fopen(argv[i],"r");	if(input == NULL)	{		fprintf(stderr,"can't open input file %s\n",argv[i]);		exit(1);	}	output = fopen(argv[i+2],"w");	if(output == NULL)	{		fprintf(stderr,"can't open output file %s\n",argv[i+2]);		exit(1);	}	if((model_=load_model(argv[i+1]))==0)	{		fprintf(stderr,"can't open model file %s\n",argv[i+1]);		exit(1);	}	line = (char *) malloc(max_line_len*sizeof(char));	x = (struct feature_node *) malloc(max_nr_attr*sizeof(struct feature_node));	do_predict(input, output, model_);	destroy_model(model_);	free(line);	free(x);	fclose(input);	fclose(output);	return 0;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -