⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 train.c

📁 关于支持向量机的,有专门的工具箱,很好用,有什么问题请指教
💻 C
字号:
#include <stdio.h>#include <math.h>#include <stdlib.h>#include <string.h>#include <ctype.h>#include "linear.h"#define Malloc(type,n) (type *)malloc((n)*sizeof(type))#define INF HUGE_VALvoid exit_with_help(){	printf(	"Usage: train [options] training_set_file [model_file]\n"	"options:\n"	"-s type : set type of solver (default 1)\n"	"	0 -- L2 logistic regression\n"	"	1 -- L2-loss support vector machines (dual)\n"		"	2 -- L2-loss support vector machines (primal)\n"	"	3 -- L1-loss support vector machines (dual)\n"	"-c cost : set the parameter C (default 1)\n"	"-e epsilon : set tolerance of termination criterion\n"	"	-s 0 and 2\n" 	"		|f'(w)|_2 <= eps*min(pos,neg)/l*|f'(w0)|_2,\n" 	"		where f is the primal function, (default 0.01)\n"	"	-s 1 and 3\n"	"		|min(max(alpha_i - G_i,0),C)-alpha_i|<= eps,\n"	"		where G is the gradient of the dual, (default 0.1)\n"	"-B bias : if bias >= 0, instance x becomes [x; bias]; if < 0, no bias term added (default 1)\n"	"-wi weight: weights adjust the parameter C of different classes (see README for details)\n"	"-v n: n-fold cross validation mode\n"	);	exit(1);}void parse_command_line(int argc, char **argv, char *input_file_name, char *model_file_name);void read_problem(const char *filename);void do_cross_validation();struct feature_node *x_space;struct parameter param;struct problem prob;struct model* model_;int flag_cross_validation;int nr_fold;double bias;int main(int argc, char **argv){	char input_file_name[1024];	char model_file_name[1024];	const char *error_msg;	parse_command_line(argc, argv, input_file_name, model_file_name);	read_problem(input_file_name);	error_msg = check_parameter(&prob,&param);	if(error_msg)	{		fprintf(stderr,"Error: %s\n",error_msg);		exit(1);	}	if(flag_cross_validation)	{		do_cross_validation();	}	else	{		model_=train(&prob, &param);		save_model(model_file_name, model_);		destroy_model(model_);	}	destroy_param(&param);	free(prob.y);	free(prob.x);	free(x_space);	return 0;}void do_cross_validation(){	int i;	int total_correct = 0;	int *target = Malloc(int, prob.l);	cross_validation(&prob,&param,nr_fold,target);	for(i=0;i<prob.l;i++)		if(target[i] == prob.y[i])			++total_correct;	printf("Cross Validation Accuracy = %g%%\n",100.0*total_correct/prob.l);	free(target);}void parse_command_line(int argc, char **argv, char *input_file_name, char *model_file_name){	int i;	// default values	param.solver_type = L2LOSS_SVM_DUAL;	param.C = 1;	param.eps = INF; // see setting below	param.nr_weight = 0;	param.weight_label = NULL;	param.weight = NULL;	flag_cross_validation = 0;	bias = 1;	// parse options	for(i=1;i<argc;i++)	{		if(argv[i][0] != '-') break;		if(++i>=argc)			exit_with_help();		switch(argv[i-1][1])		{			case 's':				param.solver_type = atoi(argv[i]);				break;			case 'c':				param.C = atof(argv[i]);				break;			case 'e':				param.eps = atof(argv[i]);				break;			case 'B':				bias = atof(argv[i]);				break;			case 'w':				++param.nr_weight;				param.weight_label = (int *)realloc(param.weight_label,sizeof(int)*param.nr_weight);				param.weight = (double *)realloc(param.weight,sizeof(double)*param.nr_weight);				param.weight_label[param.nr_weight-1] = atoi(&argv[i-1][2]);				param.weight[param.nr_weight-1] = atof(argv[i]);				break;			case 'v':				flag_cross_validation = 1;				nr_fold = atoi(argv[i]);				if(nr_fold < 2)				{					fprintf(stderr,"n-fold cross validation: n must >= 2\n");					exit_with_help();				}				break;			default:				fprintf(stderr,"unknown option\n");				exit_with_help();				break;		}	}	// determine filenames	if(i>=argc)		exit_with_help();	strcpy(input_file_name, argv[i]);	if(i<argc-1)		strcpy(model_file_name,argv[i+1]);	else	{		char *p = strrchr(argv[i],'/');		if(p==NULL)			p = argv[i];		else			++p;		sprintf(model_file_name,"%s.model",p);	}	if(param.eps == INF)	{		if(param.solver_type == L2_LR || param.solver_type == L2LOSS_SVM)			param.eps = 0.01;		else if(param.solver_type == L2LOSS_SVM_DUAL || param.solver_type == L1LOSS_SVM_DUAL)			param.eps = 0.1;	}}// read in a problem (in libsvm format)void read_problem(const char *filename){	int elements, max_index, i, j;	FILE *fp = fopen(filename,"r");	if(fp == NULL)	{		fprintf(stderr,"can't open input file %s\n",filename);		exit(1);	}	prob.l = 0;	elements = 0;	while(1)	{		int c = fgetc(fp);		switch(c)		{			case '\n':				++prob.l;				// fall through,				// count the '-1' element			case ':':				++elements;				break;			case EOF:				goto out;			default:				;		}	}out:	rewind(fp);	prob.bias=bias;	prob.y = Malloc(int,prob.l);	prob.x = Malloc(struct feature_node *, prob.l);	x_space = Malloc(struct feature_node, elements+prob.l);	max_index = 0;	j=0;	for(i=0;i<prob.l;i++)	{		double label;		prob.x[i] = &x_space[j];		fscanf(fp,"%lf",&label);		prob.y[i] = (int)label;		while(1)		{			int c;			do {				c = getc(fp);				if(c=='\n') goto out2;			} while(isspace(c));			ungetc(c,fp);			if (fscanf(fp,"%d:%lf",&(x_space[j].index),&(x_space[j].value)) < 2)			{				fprintf(stderr,"Wrong input format at line %d\n", i+1);				exit(1);			}			if (x_space[j].index<=0)			{				fprintf(stderr,"Error: index <=0\n");				exit(1);			}			++j;		}out2:		if(j>=1 && x_space[j-1].index > max_index)			max_index = x_space[j-1].index;		if(prob.bias>=0)			x_space[j++].value = prob.bias;		x_space[j++].index = -1;	}	if(prob.bias>=0)	{		prob.n=max_index+1;		for(i=1;i<prob.l;i++)			(prob.x[i]-2)->index = prob.n; 		x_space[j-2].index = prob.n;	}	else		prob.n=max_index;	fclose(fp);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -