📄 train.c
字号:
#include <stdio.h>#include <math.h>#include <stdlib.h>#include <string.h>#include <ctype.h>#include "linear.h"#define Malloc(type,n) (type *)malloc((n)*sizeof(type))#define INF HUGE_VALvoid exit_with_help(){ printf( "Usage: train [options] training_set_file [model_file]\n" "options:\n" "-s type : set type of solver (default 1)\n" " 0 -- L2 logistic regression\n" " 1 -- L2-loss support vector machines (dual)\n" " 2 -- L2-loss support vector machines (primal)\n" " 3 -- L1-loss support vector machines (dual)\n" "-c cost : set the parameter C (default 1)\n" "-e epsilon : set tolerance of termination criterion\n" " -s 0 and 2\n" " |f'(w)|_2 <= eps*min(pos,neg)/l*|f'(w0)|_2,\n" " where f is the primal function, (default 0.01)\n" " -s 1 and 3\n" " |min(max(alpha_i - G_i,0),C)-alpha_i|<= eps,\n" " where G is the gradient of the dual, (default 0.1)\n" "-B bias : if bias >= 0, instance x becomes [x; bias]; if < 0, no bias term added (default 1)\n" "-wi weight: weights adjust the parameter C of different classes (see README for details)\n" "-v n: n-fold cross validation mode\n" ); exit(1);}void parse_command_line(int argc, char **argv, char *input_file_name, char *model_file_name);void read_problem(const char *filename);void do_cross_validation();struct feature_node *x_space;struct parameter param;struct problem prob;struct model* model_;int flag_cross_validation;int nr_fold;double bias;int main(int argc, char **argv){ char input_file_name[1024]; char model_file_name[1024]; const char *error_msg; parse_command_line(argc, argv, input_file_name, model_file_name); read_problem(input_file_name); error_msg = check_parameter(&prob,¶m); if(error_msg) { fprintf(stderr,"Error: %s\n",error_msg); exit(1); } if(flag_cross_validation) { do_cross_validation(); } else { model_=train(&prob, ¶m); save_model(model_file_name, model_); destroy_model(model_); } destroy_param(¶m); free(prob.y); free(prob.x); free(x_space); return 0;}void do_cross_validation(){ int i; int total_correct = 0; int *target = Malloc(int, prob.l); cross_validation(&prob,¶m,nr_fold,target); for(i=0;i<prob.l;i++) if(target[i] == prob.y[i]) ++total_correct; printf("Cross Validation Accuracy = %g%%\n",100.0*total_correct/prob.l); free(target);}void parse_command_line(int argc, char **argv, char *input_file_name, char *model_file_name){ int i; // default values param.solver_type = L2LOSS_SVM_DUAL; param.C = 1; param.eps = INF; // see setting below param.nr_weight = 0; param.weight_label = NULL; param.weight = NULL; flag_cross_validation = 0; bias = 1; // parse options for(i=1;i<argc;i++) { if(argv[i][0] != '-') break; if(++i>=argc) exit_with_help(); switch(argv[i-1][1]) { case 's': param.solver_type = atoi(argv[i]); break; case 'c': param.C = atof(argv[i]); break; case 'e': param.eps = atof(argv[i]); break; case 'B': bias = atof(argv[i]); break; case 'w': ++param.nr_weight; param.weight_label = (int *)realloc(param.weight_label,sizeof(int)*param.nr_weight); param.weight = (double *)realloc(param.weight,sizeof(double)*param.nr_weight); param.weight_label[param.nr_weight-1] = atoi(&argv[i-1][2]); param.weight[param.nr_weight-1] = atof(argv[i]); break; case 'v': flag_cross_validation = 1; nr_fold = atoi(argv[i]); if(nr_fold < 2) { fprintf(stderr,"n-fold cross validation: n must >= 2\n"); exit_with_help(); } break; default: fprintf(stderr,"unknown option\n"); exit_with_help(); break; } } // determine filenames if(i>=argc) exit_with_help(); strcpy(input_file_name, argv[i]); if(i<argc-1) strcpy(model_file_name,argv[i+1]); else { char *p = strrchr(argv[i],'/'); if(p==NULL) p = argv[i]; else ++p; sprintf(model_file_name,"%s.model",p); } if(param.eps == INF) { if(param.solver_type == L2_LR || param.solver_type == L2LOSS_SVM) param.eps = 0.01; else if(param.solver_type == L2LOSS_SVM_DUAL || param.solver_type == L1LOSS_SVM_DUAL) param.eps = 0.1; }}// read in a problem (in libsvm format)void read_problem(const char *filename){ int elements, max_index, i, j; FILE *fp = fopen(filename,"r"); if(fp == NULL) { fprintf(stderr,"can't open input file %s\n",filename); exit(1); } prob.l = 0; elements = 0; while(1) { int c = fgetc(fp); switch(c) { case '\n': ++prob.l; // fall through, // count the '-1' element case ':': ++elements; break; case EOF: goto out; default: ; } }out: rewind(fp); prob.bias=bias; prob.y = Malloc(int,prob.l); prob.x = Malloc(struct feature_node *, prob.l); x_space = Malloc(struct feature_node, elements+prob.l); max_index = 0; j=0; for(i=0;i<prob.l;i++) { double label; prob.x[i] = &x_space[j]; fscanf(fp,"%lf",&label); prob.y[i] = (int)label; while(1) { int c; do { c = getc(fp); if(c=='\n') goto out2; } while(isspace(c)); ungetc(c,fp); if (fscanf(fp,"%d:%lf",&(x_space[j].index),&(x_space[j].value)) < 2) { fprintf(stderr,"Wrong input format at line %d\n", i+1); exit(1); } if (x_space[j].index<=0) { fprintf(stderr,"Error: index <=0\n"); exit(1); } ++j; }out2: if(j>=1 && x_space[j-1].index > max_index) max_index = x_space[j-1].index; if(prob.bias>=0) x_space[j++].value = prob.bias; x_space[j++].index = -1; } if(prob.bias>=0) { prob.n=max_index+1; for(i=1;i<prob.l;i++) (prob.x[i]-2)->index = prob.n; x_space[j-2].index = prob.n; } else prob.n=max_index; fclose(fp);}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -