⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 linear.cpp

📁 关于支持向量机的,有专门的工具箱,很好用,有什么问题请指教
💻 CPP
📖 第 1 页 / 共 2 页
字号:
#include <math.h>#include <stdio.h>#include <stdlib.h>#include <string.h>#include <stdarg.h>#include "linear.h"#include "tron.h"typedef signed char schar;template <class T> inline void swap(T& x, T& y) { T t=x; x=y; y=t; }#ifndef mintemplate <class T> inline T min(T x,T y) { return (x<y)?x:y; }#endif#ifndef maxtemplate <class T> inline T max(T x,T y) { return (x>y)?x:y; }#endif#define Malloc(type,n) (type *)malloc((n)*sizeof(type))#define INF HUGE_VAL#if 1void info(const char *fmt,...){	va_list ap;	va_start(ap,fmt);	vprintf(fmt,ap);	va_end(ap);}void info_flush(){	fflush(stdout);}#elsevoid info(char *fmt,...) {}void info_flush() {}#endifclass l2_lr_fun : public function{public:	l2_lr_fun(const problem *prob, double Cp, double Cn);	~l2_lr_fun();		double fun(double *w);	void grad(double *w, double *g);	void Hv(double *s, double *Hs);	int get_nr_variable(void);private:	void Xv(double *v, double *Xv);	void XTv(double *v, double *XTv);	double *C;	double *z;	double *D;	const problem *prob;};l2_lr_fun::l2_lr_fun(const problem *prob, double Cp, double Cn){	int i;	int l=prob->l;	int *y=prob->y;	this->prob = prob;	z = new double[l];	D = new double[l];	C = new double[l];	for (i=0; i<l; i++)	{		if (y[i] == 1)			C[i] = Cp;		else			C[i] = Cn;	}}l2_lr_fun::~l2_lr_fun(){	delete[] z;	delete[] D;	delete[] C;}double l2_lr_fun::fun(double *w){	int i;	double f=0;	int *y=prob->y;	int l=prob->l;	int n=prob->n;	Xv(w, z);	for(i=0;i<l;i++)	{	        double yz = y[i]*z[i];		if (yz >= 0)		        f += C[i]*log(1 + exp(-yz));		else		        f += C[i]*(-yz+log(1 + exp(yz)));	}	f = 2*f;	for(i=0;i<n;i++)		f += w[i]*w[i];	f /= 2.0;	return(f);}void l2_lr_fun::grad(double *w, double *g){	int i;	int *y=prob->y;	int l=prob->l;	int n=prob->n;	for(i=0;i<l;i++)	{		z[i] = 1/(1 + exp(-y[i]*z[i]));		D[i] = z[i]*(1-z[i]);		z[i] = C[i]*(z[i]-1)*y[i];	}	XTv(z, g);	for(i=0;i<n;i++)		g[i] = w[i] + g[i];}int l2_lr_fun::get_nr_variable(void){	return prob->n;}void l2_lr_fun::Hv(double *s, double *Hs){	int i;	int l=prob->l;	int n=prob->n;	double *wa = new double[l];	Xv(s, wa);	for(i=0;i<l;i++)		wa[i] = C[i]*D[i]*wa[i];	XTv(wa, Hs);	for(i=0;i<n;i++)		Hs[i] = s[i] + Hs[i];	delete[] wa;}void l2_lr_fun::Xv(double *v, double *Xv){	int i;	int l=prob->l;	feature_node **x=prob->x;	for(i=0;i<l;i++)	{		feature_node *s=x[i];		Xv[i]=0;		while(s->index!=-1)		{			Xv[i]+=v[s->index-1]*s->value;			s++;		}	}}void l2_lr_fun::XTv(double *v, double *XTv){	int i;	int l=prob->l;	int n=prob->n;	feature_node **x=prob->x;	for(i=0;i<n;i++)		XTv[i]=0;	for(i=0;i<l;i++)	{		feature_node *s=x[i];		while(s->index!=-1)		{			XTv[s->index-1]+=v[i]*s->value;			s++;		}	}}class l2loss_svm_fun : public function{public:	l2loss_svm_fun(const problem *prob, double Cp, double Cn);	~l2loss_svm_fun();		double fun(double *w);	void grad(double *w, double *g);	void Hv(double *s, double *Hs);	int get_nr_variable(void);private:	void Xv(double *v, double *Xv);	void subXv(double *v, double *Xv);	void subXTv(double *v, double *XTv);	double *C;	double *z;	double *D;	int *I;	int sizeI;	const problem *prob;};l2loss_svm_fun::l2loss_svm_fun(const problem *prob, double Cp, double Cn){	int i;	int l=prob->l;	int *y=prob->y;	this->prob = prob;	z = new double[l];	D = new double[l];	C = new double[l];	I = new int[l];	for (i=0; i<l; i++)	{		if (y[i] == 1)			C[i] = Cp;		else			C[i] = Cn;	}}l2loss_svm_fun::~l2loss_svm_fun(){	delete[] z;	delete[] D;	delete[] C;	delete[] I;}double l2loss_svm_fun::fun(double *w){	int i;	double f=0;	int *y=prob->y;	int l=prob->l;	int n=prob->n;	Xv(w, z);	for(i=0;i<l;i++)	{	        z[i] = y[i]*z[i];		double d = z[i]-1;		if (d < 0)			f += C[i]*d*d;	}	f = 2*f;	for(i=0;i<n;i++)		f += w[i]*w[i];	f /= 2.0;	return(f);}void l2loss_svm_fun::grad(double *w, double *g){	int i;	int *y=prob->y;	int l=prob->l;	int n=prob->n;	sizeI = 0;	for (i=0;i<l;i++)		if (z[i] < 1)		{			z[sizeI] = C[i]*y[i]*(z[i]-1);			I[sizeI] = i;			sizeI++;		}	subXTv(z, g);	for(i=0;i<n;i++)		g[i] = w[i] + 2*g[i];}int l2loss_svm_fun::get_nr_variable(void){	return prob->n;}void l2loss_svm_fun::Hv(double *s, double *Hs){	int i;	int l=prob->l;	int n=prob->n;	double *wa = new double[l];	subXv(s, wa);	for(i=0;i<sizeI;i++)		wa[i] = C[I[i]]*wa[i];	subXTv(wa, Hs);	for(i=0;i<n;i++)		Hs[i] = s[i] + 2*Hs[i];	delete[] wa;}void l2loss_svm_fun::Xv(double *v, double *Xv){	int i;	int l=prob->l;	feature_node **x=prob->x;	for(i=0;i<l;i++)	{		feature_node *s=x[i];		Xv[i]=0;		while(s->index!=-1)		{			Xv[i]+=v[s->index-1]*s->value;			s++;		}	}}void l2loss_svm_fun::subXv(double *v, double *Xv){	int i;	feature_node **x=prob->x;	for(i=0;i<sizeI;i++)	{		feature_node *s=x[I[i]];		Xv[i]=0;		while(s->index!=-1)		{			Xv[i]+=v[s->index-1]*s->value;			s++;		}	}}void l2loss_svm_fun::subXTv(double *v, double *XTv){	int i;	int n=prob->n;	feature_node **x=prob->x;	for(i=0;i<n;i++)		XTv[i]=0;	for(i=0;i<sizeI;i++)	{		feature_node *s=x[I[i]];		while(s->index!=-1)		{			XTv[s->index-1]+=v[i]*s->value;			s++;		}	}}// A coordinate descent algorithm for // L1-loss and L2-loss SVM dual problems////  min_\alpha  0.5(\alpha^T (Q + D)\alpha) - e^T \alpha,//    s.t.      0 <= alpha_i <= upper_bound_i,// //  where Qij = yi yj xi^T xj and//  D is a diagonal matrix //// In L1-SVM case:// 		upper_bound_i = Cp if y_i = 1// 		upper_bound_i = Cn if y_i = -1// 		D_ii = 0// In L2-Svm case:// 		upper_bound_i = INF// 		D_ii = 1/(2*Cp)	if y_i = 1// 		D_ii = 1/(2*Cn)	if y_i = -1//// Given: // x, y, Cp, Cn// eps is the stopping tolerance//// solution will be put in wstatic void solve_linear_c_svc(	const problem *prob, double *w, double eps, 	double Cp, double Cn, int solver_type){	int l = prob->l;	int n = prob->n;	int i, s, iter = 0;	double C, d, G;	double *QD = new double[l];	int max_iter = 20000;	int *index = new int[l];	double *alpha = new double[l];	schar *y = new schar[l];	int active_size = l;	// PG: projected gradient, for shrinking and stopping	double PG;	double PGmax_old = INF;	double PGmin_old = -INF;	double PGmax_new, PGmin_new;	// default solver_type: L2LOSS_SVM_DUAL	double diag_p = 0.5/Cp, diag_n = 0.5/Cn;	double upper_bound_p = INF, upper_bound_n = INF;	if(solver_type == L1LOSS_SVM_DUAL)	{		diag_p = 0; diag_n = 0;		upper_bound_p = Cp; upper_bound_n = Cn;	}		for(i=0; i<n; i++)		w[i] = 0;	for(i=0; i<l; i++)	{		alpha[i] = 0;		if(prob->y[i] > 0)		{			y[i] = +1; 			QD[i] = diag_p;		}		else		{			y[i] = -1;			QD[i] = diag_n;		}		feature_node *xi = prob->x[i];		while (xi->index != -1)		{			QD[i] += (xi->value)*(xi->value);			xi++;		}		index[i] = i;	}	while (iter < max_iter)	{		PGmax_new = 0;		PGmin_new = 0;		for (i=0; i<active_size; i++)		{			int j = i+rand()%(active_size-i);			swap(index[i], index[j]);		}		for (s=0; s < active_size; s++)		{			i = index[s];			G = 0;			schar yi = y[i];			feature_node *xi = prob->x[i];			while(xi->index!= -1)			{				G += w[xi->index-1]*(xi->value);				xi++;			}			G = G*yi-1;			if(yi == 1)			{				C = upper_bound_p; 				G += alpha[i]*diag_p; 			}			else 			{				C = upper_bound_n;				G += alpha[i]*diag_n; 			}			PG = 0;			if (alpha[i] ==0)			{				if (G > PGmax_old)				{					active_size--;					swap(index[s], index[active_size]);					s--;					continue;				}				else if (G < 0)				{					PG = G;					PGmin_new = min(PGmin_new, PG);				}			}			else if (alpha[i] == C)			{				if (G < PGmin_old)				{					active_size--;					swap(index[s], index[active_size]);					s--;					continue;				}				else if (G > 0)				{					PG = G;					PGmax_new = max(PGmax_new, PG);				}			}			else			{				PG = G;				PGmax_new = max(PGmax_new, PG);				PGmin_new = min(PGmin_new, PG);			}			if(fabs(PG) > 1.0e-12)			{				double alpha_old = alpha[i];				alpha[i] = min(max(alpha[i] - G/QD[i], 0.0), C);				d = (alpha[i] - alpha_old)*yi;				xi = prob->x[i];				while (xi->index != -1)				{					w[xi->index-1] += d*xi->value;					xi++;				}			}		}		iter++;		if(iter % 10 == 0)		{			info("."); 			info_flush();		}		if(PGmax_new - PGmin_new <= eps)		{			if(active_size == l)				break;			else			{				active_size = l;				info("*"); info_flush();				PGmax_old = INF;				PGmin_old = -INF;				continue;			}		}		PGmax_old = PGmax_new;		PGmin_old = PGmin_new;		if (PGmax_old == 0)			PGmax_old = INF;		if (PGmin_old == 0)			PGmin_old = -INF;	}	info("\noptimization finished, #iter = %d\n",iter);	if (iter >= max_iter)		info("Warning: reaching max number of iterations\n");	// calculate objective value

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -