📄 gaplsout.m
字号:
% Application of GA to the detection of outliers coupled to GA-PLS
%
% by R. Leardi
%
% Dipartimento di Chimica e Tecnologie Farmaceutiche ed Alimentari
% via Brigata Salerno (ponte) - 16147 GENOVA (ITALY)
% e-mail: riclea@dictfa.unige.it
%
% The syntax is: [ressq,counter]=gaplsout(dataset)
% The y variable is the last one
%
% The output matrix ressq reports the squared residuals for each run
% The output vector counter holds the number of runs in which each object has been predicted
function [ressq,counter]=gaplsout(total)
clc
format compact
randomiz
[tob,c]=size(total);
disp(['objects: ' int2str(tob)])
y=total(:,c);
v=c-1;
disp(['variables: ' int2str(v)]);
s1=[];s2=[];b=[];fin=[];ressq=zeros(tob,100);counter=zeros(1,tob);
evaluat=50; % 50 evaluations
objtr=30; % 30 objects in each training set
aut=2; % autoscaling; 0=raw data; 1=column centering
ng=5; % 5 deletion groups
cr=30; % 30 chromosomes
probsel=5/v; % on average 5 variables per chromosome in the orig. pop.
maxvar=30; % 30 variables as a maximum
probmut=0.01; % probability of mutation 1%
probcross=0.5; % probability of cross-over 50%
freqb=100; % backward stepwise every 100 evaluations
if floor(evaluat/100)==evaluat/100;
endb='N';
else
endb='Y';
end
runs=ceil(100/((tob-objtr)/tob)); % the number of runs is computed in such a way that each object is predicted 100 times on average
el=3;
for r=1:runs
disp(' ')
disp(['run ' num2str(r)])
trpr=randperm(tob);
dataset=total(trpr(1:objtr),:);
predset=total(trpr(objtr+1:tob),:);
% computation of CV var. with all the variables
% (the optimal number of components will be the maximum for GA)
start=0;
while start==0
[maxcomp,start,mxi,sxi,myi,syi]=plsgacv(dataset(:,1:v),y(trpr(1:objtr)),aut,ng,15);
end
disp(' ')
disp(['With all the variables:'])
disp(['components: ' int2str(maxcomp)])
disp(['C.V. variance: ' num2str(start)])
% creation and evaluation of the starting population
crom=zeros(cr,v);
resp=zeros(cr,1);
comp=zeros(cr,1);
numvar=zeros(cr,1); %%% numvar stores the number of variables in each chr.
lib=[]; %%% lib is the matrix with all the already tested chromosomes %%%
libb=[];%%% libb is the matrix with all the already backw. chromosomes %%%
nextb=freqb;
cc=0;
while cc<cr
den=0;
sumvar=0;
while (sumvar==0 | sumvar>maxvar)
a=rand(1,v);
for j=1:v
if a(1,j)<probsel
a(1,j)=1;
else
a(1,j)=0;
end
end
sumvar=sum(a);
end
den=checktw(cc,lib,a);
if den==0
lib=[lib;a];
if cc>0
[s1,s2]=chksubs(cc,crom(1:cc,:),a);
end
cc=cc+1;
var=find(a);
[fac,risp]=plsgacv(dataset(:,var),y(trpr(1:objtr)),aut,ng,maxcomp,mxi(:,var),sxi(:,var),myi,syi);
if isempty(s2)
mm=0;
else
mm=max(resp(s2));
end
if risp>mm % the new chrom. survives only if better
crom(cc,:)=a;
resp(cc,1)=risp;
comp(cc,1)=fac;
numvar(cc,1)=size(var,2);
for kk=1:size(s1,2)
if risp>=resp(s1(kk))
resp(s1(kk))=0; % the old chrom. are killed if worse
end
end
end
end
end
[vv,pp]=sort(resp);
pp=flipud(pp);
crom=crom(pp,:);
resp=resp(pp,:);
comp=comp(pp,:);
numvar=numvar(pp,:);
disp(' ')
disp(['After the creation of the original population: ' num2str(resp(1))])
maxrisp=resp(1);
while cc<evaluat
% selection of 2 chromosomes
cumrisp=cumsum(resp);
if resp(2)==0
rr=randperm(cr);
p(1,:)=crom(rr(1),:);
if resp(1)==0
p(2,:)=crom(rr(2),:);
else
p(1,:)=crom(1,:);
end
else
k=rand*cumrisp(cr);
j=1;
while k>cumrisp(j)
j=j+1;
end
p(1,:)=crom(j,:);
p(2,:)=p(1,:);
while p(2,:)==p(1,:)
k=rand*cumrisp(cr);
j=1;
while k>cumrisp(j)
j=j+1;
end
p(2,:)=crom(j,:);
end
end
% cross-over between the 2 chromosomes
s=p;
diff=find(p(1,:)~=p(2,:));
randmat=rand(1,size(diff,2));
cro=find(randmat<probcross);
s(1,diff(cro))=p(2,diff(cro));
s(2,diff(cro))=p(1,diff(cro));
% mutations
m=rand(2,v);
for i=1:2
f=find((m(i,:))<probmut);
bb=size(f,2);
for j=1:bb
if s(i,f(j))==0
s(i,f(j))=1;
else
s(i,f(j))=0;
end
end
end
% evaluation of the offspring
for i=1:2
den=0;
var=find(s(i,:));
sumvar=sum(s(i,:));
if sumvar==0 | sumvar>maxvar
den=1;
end
if den==0
den=checktw(cc,lib,s(i,:));
end
if den==0
cc=cc+1;
[fac,risp]=plsgacv(dataset(:,var),y(trpr(1:objtr)),aut,ng,maxcomp,mxi(:,var),sxi(:,var),myi,syi);
lib=[s(i,:);lib];
if risp>maxrisp
disp(['ev. ' int2str(cc) ' - ' num2str(risp)])
maxrisp=risp;
end
if risp>resp(cr)
[crom,resp,comp,numvar]=update(cr,crom,s(i,:),resp,comp,numvar,risp,fac,var);
end
end
end
% stepwise
if cc>=nextb
nextb=nextb+freqb;
[nc,rispmax,compmax,cc,maxrisp,libb]=backw(r,cr,crom,resp,numvar,cc,dataset,y(trpr(1:objtr)),aut,ng,maxcomp,maxrisp,libb,mxi,sxi,myi,syi,el);
if isempty(nc)~=1
[crom,resp,comp,numvar]=update(cr,crom,nc,resp,comp,numvar,rispmax,compmax,find(nc));
end
end
end
if endb=='Y' % final stepwise
[nc,rispmax,compmax,cc,maxrisp,libb]=backw(r,cr,crom,resp,numvar,cc,dataset,y(trpr(1:objtr)),aut,ng,maxcomp,maxrisp,libb,mxi,sxi,myi,syi,el);
if isempty(nc)~=1
[crom,resp,comp,numvar]=update(cr,crom,nc,resp,comp,numvar,rispmax,compmax,find(nc));
end
end
selvar=find(crom(1,:));
[e]=predpls(dataset(:,selvar),y(trpr(1:objtr)),predset(:,selvar),y(trpr(objtr+1:tob)),comp(1),aut);
% disp(trpr)
% disp(' ')
% disp(selvar)
% disp(' ')
% disp(e)
for rescount=1:tob-30
ressq(trpr(objtr+rescount),r)=(e(rescount)-predset(rescount,c))^2;
counter(trpr(objtr+rescount))=counter(trpr(objtr+rescount))+1;
end
for jj=1:tob
if counter(jj)>0
meanressq(jj)=sum(ressq(jj,:))/counter(jj);
else
meanressq(jj)=0;
end
end
figure(1)
bar(sqrt(meanressq),'r');
set(gca,'XLim',[0.5 tob+0.5]);
title(['RMSEP of the objects of the training set' ]);
figure(gcf)
end
figure(2)
[a,b]=hist(sqrt(meanressq),100);
bar(b,a,'r');
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -